Бестрансформаторные выходные каскады
10.4.1 Выходные каскады в режиме класса В Трансформаторные каскады хорошо зарекомендовали себя при работе на фиксированной частоте промышленной сети 50 или 400 Гц. При усилении сигналов в широкой полосе частот предпочтение отдается бестрансформаторным схемам выходных каскадов. Простейший двухтактный выходной каскад в режиме класса В строится на транзисторах разного типа проводимости по схеме эмиттерного повторителя (рис. 10.3, а). При U вх=0 оба транзистора закрыты и ток через нагрузку не протекает. В положительный полупериод, когда U вх превышает напряжение отпирания транзистора VT 1, он переходит в линейный режим и U вх повторяется на сопротивлении нагрузки R н (ток протекает от источника + Е). Аналогичным образом в отрицательный полупериод U вх повторя ется на нагрузке R н после отпирания транзистора VT 2 (ток протекает от источника – Е). Достоинство режима класса В – сравнительно высокий КПД. Он определяется соотношением , где – коэффициент использования напряжения источника питания, U вых – амплитуда выходного синусоидального напряжения. Недостатком режима В являются большие нелинейные искажения U вых, особенно заметные в момент перехода U вх через нуль (характерная ступенька). Аналогичный каскад при однополярном источнике питания показан на рис. 10.3, б. Делитель задает потенциал баз транзисторов VT 1, VT 2 на уровне Е/ 2. В положительный полупериод конденсатор С 2 подзаряжается через транзистор VT 1 и нагрузку, в отрицательный полупериод он частично разряжается через транзистор VT 2 и R н. Обычно на конденсаторе устанавливается постоянная составляющая напряжения /2, которая при большой величине емкости конденсатора практически не меняется. В отрицательный полупериод (когда транзистор VT 1 закрыт) конденсатор С 2 выполняет роль источника питания. В положительный полупериод ток через нагрузку протекает под действием разности напряжений Е и .
10.4.2 Выходной каскад в режиме класса АВ
Схемы по рис. 10.3 обеспечивают лишь усиление по току. Амплитуда входного напряжения должна быть несколько больше требуемой амплитуды U вых, т.к. коэффициент усиления по напряжению эмиттерного повторителя меньше единицы. Для уменьшения нелинейных искажений транзисторы выходного каскада переводят в режим АВ и обычно запитывают от каскада предварительного усиления, выполненного на транзисторе VT 1 по схеме с ОЭ (рис. 10.4). Необходимое для режима АВ начальное смещение выходных транзисторов VT 2 и VT 3 создается за счет падения напряжения на диодах VD 1 и VD 2. Каскад на VT 1обеспечивает усиление по напряжению, а выходной каскад на транзисторах VT 2, VT 3 – усиление по току. С ростом температуры уменьшается падение напряжения на диодах, что способствует температурной стабильности начального режима работы транзисторов VT 2, VT 3. Падение напряжения на диодах должно быть равно 2 U ЭБ20. Если оно меньше, между диодами VD 1 и VD 2
Ток покоя выходных транзисторов выбирают порядка пяти процентов от максимального тока нагрузки При этом среднее значение тока выходных транзисторов в номинальном режиме Мощность, потребляемая выходным каскадом, КПД выходного каскада . Величину емкости разделительного конденсатора связи с нагрузкой C 2 по допустимому коэффициенту частотных искажений МС 2на нижней граничной частоте f н можно оценить следующим образом: где – выходное сопротивление эмиттерного повторителя. Резистор R Э обеспечивает температурную стабилизацию режима работы транзистора VT 1. Падением напряжения на R Э задаются небольшим, чтобы сохранить высокий КПД каскада. За счет резистора R Э вводится последовательная ООС по постоянному току. Если блокировочный конденсатор С Э не поставить, то она будет действовать и на переменном токе, увеличивая входное сопротивление каскада, но снижая коэффициент усиления по напряжению до величины . При наличии конденсатора С Э отрицательная обратная связь на переменном токе отсутствует и коэффициент усиления по напряжению равен . Для стабилизации режима работы выходных транзисторов резистор R 1 часто подключают не к источнику Е, а к общей точке эмиттеров VT 2 и VT 3. Тогда в усилителе действует на постоянном токе местная ООС по току за счет резистора R Э и общая ООС по напряжению за счет резистора R 1. Но параллельная ООС по напряжению будет и на переменном токе. Она снизит величины входного и выходного сопротивлений каскада. Входное сопротивление усилителя в этом случае можно рассчитать по формуле . Недостаток рассматриваемой схемы состоит в том, что максимально достижимая амплитуда переменного напряжения на коллекторе транзистора VT 1 заметно меньше половины напряжения источника питания Е, т.е. недостаточна для полной раскачки оконечных транзисторов. При их полной раскачке амплитуда напряжения на нагрузке максимальна и близка к Е /2, а требуемая амплитуда переменного напряжения на базах оконечных транзисторов больше, так как они включены по схеме эмиттерных пов-торителей. Остаточное напряжение на транзисторе VT 2, например, равно . Если уменьшить R К, то упадет коэффициент усиления по напряжению, больший ток потребуется в рабочей точке транзистора VT 1 и труднее будет открыть VT 3. Остаточное напряжение на транзисторе VT 3 равно . Поэтому двойной размах напряжения на нагрузке меньше Е.
|