Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Описательной статистики





Средняя – средняя арифметическая вариант ряда.

Стандартная ошибка – это средняя ошибка выборки, которая характеризует стандартное отклонение вариантов выборочной средней от генеральной средней и зависит от колеблемости признака в генеральной совокупности, от числа отобранных единиц, а также от способа организации выборки.

Средняя ошибка используется для расчета предельной ошибки выборки (показатель Уровень надежности), которая дает возможность выяснить, в каких пределах находится величина генеральной средней.

Медианой называется значение признака, приходящееся на середину ранжированной (упорядоченной) совокупности. Для ранжированного ряда с нечетным числом элементов медианой является варианта, расположенная в центре ряда. Для ранжированного ряда с четным числом элементов медианой будет средняя арифметическая из двух смежных вариант.

Дисперсия – числовая характеристика случайной величины, характеризующая рассеяние ее возможных значений около математического ожидания. Дисперсия имеет размерность квадрата вариант. Для наглядной характеристики меры величины вариации удобнее пользоваться величиной, размерность которой совпадает с размерностью вариант. Для этого из дисперсии извлекают квадратный корень. Полученная величина называется Стандартным отклонением (среднеквадратичным отклонением). Оно выражается в тех же единицах измерения, что и признак (в нашей задаче – в рублях).

Эксцесс характеризует так называемую «крутость», то есть островершинность или плосковершинность распределения. Он может быть рассчитан для любых распределений, но в большинстве случаев вычисляется только для симметричных. Это объясняется тем, что за исходную принята кривая нормального распределения, относительно вершины которой и определяется выпад вверх или вниз вершины эмпирического распределения. Если значение эксцесса больше нуля, то распределение островершинное. Если эксцесс меньше нуля – плосковершинное.

Определение формы кривой является важной задачей, так как статистический материал в обычных условиях дает по определенному признаку характерную, типичную для него кривую распределения. Всякое искажение формы кривой означает нарушение или изменение нормальных условий возникновения статистического материала.

Для симметричных распределений средняя арифметическая, мода и медиана равны между собой. Если мода меньше медианы, асимметрия правосторонняя, если мода больше медианы – асимметрия левосторонняя. Чем больше разница между средней арифметической медианой и модой, тем больше асимметрия ряда.

Применение показателя Асимметричность дает возможность определить величину асимметрии в генеральной совокупность. Если Асимметричность больше нуля – асимметрия правосторонняя (положительная), если Асимметричность меньше нуля – асимметрия левосторонняя (отрицательная). Если Асимметричность равна нулю – распределение симметричное.

Интервал, или размах вариации выборки – разность между максимумом и минимумом.

Минимум – минимальное значение признака в генеральной совокупности.

Максимум – максимальное значение признака в генеральной совокупности.

Сумма – сумма всех признаков генеральной совокупности.

Счет – количество признаков генеральной совокупности.


Лабораторная работа № 8 (1 час)







Дата добавления: 2014-11-10; просмотров: 576. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия