Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Корреляция альтернативных признаков






К числу альтернативных признаков относятся признаки, которые могут принимать лишь два возможных различных значения.

Теснота взаимосвязи альтернативных признаков может быть измерена с помощью коэффициента контингенции Пирсона

и коэффициента Юла

,

где a и b, c и d – частоты, представленные в табл. 7, которые удобно использовать для вычисления коэффициентов и .

 

Таблица 7

Таблица для вычисления коэффициентов контингенции

и ассоциации

Признаки а - да а - нет Всего
b – да a b a + b
b – нет c d c + d
Всего a + c b + d a + b + c + d

 

Эти коэффициенты принимают значения на отрезке [-1;1], причем для одних и тех же данных всегда . Отрицательное значение коэффициента говорит об обратном направлении связи. Если или , то это свидетельство наличия связи.

Пример 1.

В коллективе из 100 человек 60 – женщины. В течение года было 30 опозданий на работу. Существует ли связь между половой принадлежностью работника и опозданиями на работу?

Таблица 8

Опоздания на работу за год

Состав коллектива Опоздавшие Не опоздавшие Всего
Женщины
Мужчины
Всего

Коэффициенты контингенции и ассоциации соответственно:

 

.

 

Связь между половой принадлежностью работника и опозданиями на работу существует и больше опозданиям подвержены мужчины.

 

7.6. Корреляционный анализ количественных признаков

Одним из более часто применяемых показателей взаимозависимости двух случайных величин является парный коэффициент корреляции.

Выборочный парный коэффициент корреляций, найденный по выборке объемом , где - результат - го наблюдения определяется по формуле

,

, ,

, ,

.

Качественные характеристики связи приведены в табл. 9.

 

Таблица 9

Качественные характеристики связи

Значение r Характер связи
От 0 до 0,3 Практически отсутствует
От 0,3 до 0,5 Слабая
От 0,5 до 0,7 Умеренная
От 0,7 до 1 Сильная

 

После того как с помощью корреляционного анализа выявлено наличие статистических связей между переменными и оценена сте­пень их тесноты, обычно переходят к математическому описанию конкретного вида зависимостей с использованием регрессионного анализа. С этой целью подбирают класс функций, связывающий ре­зультативный показатель и аргументы , отбирают наибо­лее информативные аргументы, вычисляют оценки неизвестных зна­чений параметров уравнения связи и анализируют свойства получен­ного уравнения.

Функция , описывающая зависимость среднего значе­ния результативного признака от заданных значений аргументов, на­зывается функцией (уравнением) регрессии

Двухмерное линейное уравнение регрессии:

 

,

, .

Ранговая корреляция.

Ранговый коэффициент корреляции характеризует степень статистической связи между порядковыми переменными.

Главной задачей ранговой корреляции является определение того, насколько выделенные группы идентичны в своих ориентациях, и какое сочетание приоритетов является наиболее эффективным.

 

Порядок проведения ранговой корреляции:

1. Разделить полученные результаты по рангам.

2. Вычислить коэффициент ранговой корреляции по формуле

,

где разность рангов, общее число рангов.

 

Контрольные вопросы

1. Чем корреляционная зависимость принципиально отличается от причинной?

2. В каких случаях целесообразно использование расчета ранговой корреляции?

3. Что необходимо принимать во внимание при осуществлении причинного анализа?

4. Чем определяется выбор схемы декомпозиции при исследовании систем управления?

5. В чем ограниченность корреляционного анализа в исследовании проблем управления?

 

8. Параметрическое исследование и факторный анализ
систем управления







Дата добавления: 2014-11-10; просмотров: 1167. Нарушение авторских прав; Мы поможем в написании вашей работы!



Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Гносеологический оптимизм, скептицизм, агностицизм.разновидности агностицизма Позицию Агностицизм защищает и критический реализм. Один из главных представителей этого направления...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Studopedia.info - Студопедия - 2014-2022 год . (0.019 сек.) русская версия | украинская версия