Всю систему взаимообусловленности истинностных значений суждений с одинаковой материей удобно изобразить графически с помощью так называемого логического квадрата
Буквы на его углах символизируют различные виды суждений - A, E, I, O (см. рис. 7). А его стороны и диагонали выражают всю совокупность возможных отношений между ними.
Линия AE образует отношение противоположности или, иначе, контрарности. Пары этих суждений никогда не могут быть одновременно истинными; в нашем примере истинность того и другого означала бы, что верно как утверждение о том, что все киоски в этом квартале торгуют цветами, так и о том, что ни один из них ими не торгует. Очевидно, такое невозможно. Другие же сочетания значений для пары S a P и S e P допустимы: могут быть оба ложны, и может одно быть истинным, а другое ложным. Отсюда получается правило: когда одно из противоположных суждений (S a P или S e P) истинно, то можно уверенно делать вывод, что противоположное ему истинным не является, когда же одно ложно, то никаких выводов о противоположном делать нельзя, оно может быть и тем, и другим.
Две расположенные по диагонали пары AO и EI составляют отношение противоречия или контрадикторности. Их истинностные соотношения легче всего запомнить: они не бывают ни одновременно истинными, ни одновременно ложными. Следовательно, их истинностные значения регулируются законом исключенного третьего: когда одно истинно, другое обязательно ложно и наоборот. Это значит, установив истинностное значение одного из членов пары, каким бы оно ни было, мы тем самым однозначно установили значение лежащего против него по диагонали.
Нижняя сторона квадрата IO выражает отношение частичной совместимости, или, иначе, субконтрарности. В отличие от противоположных суждений эта пара никогда не бывает одновременно ложной. В принципе можно рассматривать данное обстоятельство как следствие, обусловленное первыми двумя отношениями. В самом деле, попробуем воспользоваться теми соображениями, которые были высказаны о противоположных и противоречащих суждениях, предположив сначала, что S i P ложно, и определив значение S o P в таком случае, затем проделаем то же самое, отправляясь от того, что ложно S o P. Итак, допустим, что S i P ложно. Тогда противоречащее ему суждение S e P истинно (ибо лежащие по диагонали пары не могут быть вместе ни истинными, ни ложными); отсюда следует, что противоположное S e P суждение S a P должно быть ложным (так как из противоположных пар суждений истинным может быть только одно); но, установив ложность S a P, мы обязаны признать истинным противоречащее ему суждение S o P. Совершенно аналогично, допустив ложность S o P, мы обратным порядком придем к утверждению, что S i P в таком случае должно быть истинно. Однако при других истинностных значениях их взаимообусловленность отсутствует. Предположив, что S i P (S o P) истинно, мы сможем, правда, прийти к выводу о ложности противоречащего ему суждения S e P (S a P), но дальше рассуждение оборвется, так как при ложности одного из противоположных понятий другое может иметь любое из двух возможных значений, а значит и лежащее против него по диагонали противоречащее (и одновременно субконтрарное относительно S i P) суждение S o P может быть как истинным, так и ложным. Таким образом, получается правило в отношении субконтрарных суждений: когда одно из них ложно, другое обязательно истинно, но когда одно из них истинно, то о другом ничего сказать нельзя.
Стороны квадрата AI и EO выражают отношение подчинения или субординации. В какой-то мере его можно было бы уподобить отношению части и целого: истинность общего суждения (и утвердительного S a P, и отрицательного S e P) означает одновременно истинность частного (S i P и соответственно S o P). Если мы знаем, что все металлы электропроводны, то тем более верно говорить это о некоторых из них. Однако когда общее суждение ложно, то о частном сказать ничего нельзя; к примеру, отрицание того, что все представители данной философской школы - идеалисты, может означать как то, что их там только часть, так и то, что их там вообще нет. При движении же от частного к общему все обстоит наоборот. Лишь когда частные суждения ложны, можно делать вывод о том, что подчиняющее его суждение тоже ложно (если неверно, что часть предметов обладает (не обладает) каким-то свойством, то тогда тем более неверно сказать то же самое про все). Но если частное суждение истинно, то это оставляет нас в неведении относительно истинности или ложности общего суждения. Мы можем, например, узнать, что некоторые медведи в данной географической зоне бурые; это обстоятельство, однако, не позволит нам узнать, есть ли там еще и другие медведи или они все там бурые. Итак, основываясь на выводах об истинности общего суждения S a P и S e P, можно прийти к заключению об истинности подчиненных им суждений S i P и соответственно S o P, а от ложности частного суждения S i P и S o P можно прийти к утверждению о ложности соответствующих подчиняющих суждений S a P и S e P. При ложности же общих и истинности частных суждений никакие выводы по линии подчинения невозможны. И это правило тоже можно получить в качестве следствия из отношений противоречия и противоположности. Так, если общее суждение S a P (S e P) истинно, то тогда обязательно ложно противоположное ему суждение S e P (S a P), а отсюда по линии противоречия получим, что истинно подчиненное по отношению к S a P (S e P) суждение S i P (S o P). И таким же путем, предположив ложность частных суждений, мы придем к выводу о ложности подчиняющих их общих. При других исходных значениях рассуждения не получатся из-за того, что при ложности общих суждений не допускаются выводы по линии противоположности. Необходимо помнить о том, что теория логического квадрата построена только для неопределенночастных суждений, когда под словом " некоторые" подразумевается " как минимум некоторые, а может быть и все". На определенно-частные, или выделяющие суждения с квантором " только некоторые", она не распространяется. Система отношений истинностных значений для этого случая не укладывается в квадрат, но зато она выглядит проще. 1) Когда истинно одно из общих суждений, то все остальные обязательно ложны; обратное тоже верно. 2) Частные суждения либо оба вместе истинны (и тогда оба общих ложны), либо оба вместе ложны (и тогда одно из общих истинно, а одно ложно).
Законы логического квадрата, как и остальные логические законы, не зависят от содержания высказываний. О чем бы ни шла речь, все отмеченные правила действуют неукоснительно. Даже если нам непонятно содержание, то все равно, опираясь на одну только логическую форму, можно сделать правильные выводы или проверить, верно или нет построено то или иное рассуждение с использованием суждений одинаковой материи.
Допустим, перед нами такой текст: " Неправильно говорить, что (1) некоторые целлы представляют собой наосы, и еще более ошибочно считать, будто (2) никакие целлы не являются наосами". Чтобы разобраться с содержанием этих мало кому известных понятий, надо сначала решить, каковы эти суждения по качеству и количеству и какое между ними отношение. Первое из них частноутвердительное - S i P, второе - общеотрицательное - S e P. Следовательно, они расположены по диагонали квадрата EI и между ними отношение противоречия (не могут быть вместе как истинными, так и ложными). Высказывание же объявляет их оба ложными. Отсюда мы можем заключить, что первое суждение может быть только определенно-частным и означает: " Только некоторые целлы есть наосы", которое объявляется ложным вместе с общеотрицательным суждением (2). Из истинностных соотношений для суждений с таким квантором следует, что частные суждения бывают ложными лишь одновременно. Тогда значит и суждение частноотрицательное тоже надо признать ложным. Истинным остается только общеутвердительное суждение S a P: " Все целлы - наосы" (то и другое представляет собой название главного помещения в древнегреческом храме, то есть эти слова синонимы). Овладение правилами логического квадрата требует обязательной проработки всех относящихся к нему упражнений и задач. Его простые по отдельности истинностные соотношения в своей совокупности образуют довольно громоздкую и сложную систему.
§16. (1) Модальные суждения До сих пор нами рассматривались суждения, в которых отмечается только отношение между предметом и его свойством. Это очень распространенная форма высказывания, поэтому она и является объектом внимания науки о законах мышления. Однако она не является единственной. Не менее, а может быть и более широкое хождение в рассуждениях и сообщениях имеют высказывания, в которых, помимо указания на связь между субъектом и предикатом, отмечается также характер этой связи: случайно принадлежит свойство субъекту или в силу необходимости, уверены мы в знании содержания высказывания или же сомневаемся, какова зависимость сделанных утверждений, скажем, от принятых в обществе ограничений и запретов, когда речь идет о нормах морали и права. Такого рода и еще многие другие дополнительные характеристики называют модальностями, а включающие их в себя суждения - модальными. Суждения называют модальными, когда в них отмечается не только связь между субъектом и предикатом, но и дается характеристика этой связи или выражается отношение к ней автора суждения. Слова, указывающие на характер связи, называются модальными операторами. Иногда они не высказываются прямо, но из контекста видно, что их подразумевают.
В традиционной логике наиболее полно изучены так называемые атлетические модальности (от греч.aletheia - истина, т.е. истинные, подлинные), в которых отмечается степень нерасторжимости, непреложности обязательности связи между субъектом и предикатом: иногда она может быть необходимой, иногда - только возможной, в иных же случаях суждение отмечает просто фактическую связь предмета и его свойства без дальнейших уточнений. Так, прямоугольный ромб обязательно во всех случаях является квадратом, следовательно, суждение " Прямоугольный ромб есть квадрат" является суждением необходимости или аподиктическим; таковы же, как правило, вообще все высказывания математики и точных наук. Именно поэтому здесь чаще всего не оговаривают специально необходимый характер суждений и не вводят модальных операторов, хотя суждения являются аподиктическими. Наряду с ними имеются суждения действительности, или ассерторические; именно они рассматривались на предыдущих страницах, хотя такого названия и не употреблялось. И еще одна категория - суждения возможности, или проблематические. Они встречаются всюду, где обсуждаются перспективы предстоящих изменений и делаются предположения: " Возможно, вирус СПИДа не существовал прежде", " Возможно месторождение окажется перспективным". Исследование атлетической модальности началось еще Аристотелем, так как его философия отводит очень большую роль категории возможности в ее противопоставлении действительности. В возможном бытии, говорит древний мыслитель, очень много специфического, например, там не действует запрет на противоречие; спектр заключенных в любой вещи возможностей колеблется с размахом от одной противоположности до другой, так что в возможности вещь является одновременно и той, и не той: медь как материал, возможно, станет шаром, но возможно и не шаром. Необходимые же связи, наоборот, избирательны, не допускают варьирования. Равносторонний треугольник всегда является равноугольным и не может быть иным. Нас, впрочем, сейчас интересует не различие этих модальных категорий, а, наоборот, связь их между собой. Позднее в логике стали изучаться и неатлетические модальности. Обычно в каждой из них выделяются, как и в атлетической, по три категории суждений - две противоположные в каком-либо отношении и одна нейтральная. Например: " раньше", " одновременно", " позже". Мы ограничимся здесь лишь перечислением этих видов модальных суждений. Аксиологические модальности (от греч. axios - ценный). Она объединяет суждения, в которых дается оценка тех или иных явлений: " хорошо", " безразлично", " плохо". Эту модальность иногда называют также ценностной. Высказывания вроде: " Хорошо, что университет находится в центре города", " Плохо, что цены возрастают" - относятся к этой разновидности. Само собой понятно, что в языковых выражениях в качестве операторов выступают и другие слова тоже: " полезно", " вредно", " радует", " огорчает", " мило", " отвратительно" и др. Может быть эта модальность выражена и в сравнительной форме. Тогда ее модальные операторы выглядят иначе: " лучше", " равноценно", " хуже". Учение о ценностях в философии называют аксиологией. Ее задача - вскрыть основные человеческие ценности, показать историю их возникновения, определить их возможности, перспективы и место в жизни общества. Деонтическая модальность (от греч. deontos - нужное, должное). В ней охватываются высказывания, описывающие различного рода предписания (запреты) и, прежде всего, морально-правовые нормы, могут быть сюда отнесены медицинские, технические и прочие рекомендации, ограничения, запреты. Модальными операторами для это служат: " обязательно" (" подлежит исполнению"), " безразлично", " запрещено"; к этим трем обычно добавляют еще один дополнительный оператор - " разрешено". Существует раздел этики, называемый деонтологией, в котором рассматриваются проблемы долга и должного. Деонтологией называют также врачебную этику, предписывающую нормы поведения медицинского персонала и его взаимоотношения с пациентами. Временные модальности. Их название говорит само за себя. Подобно аксиологическим, они распадаются на две разновидности - абсолютную и относительную. Первая из них задается операторами: " всегда", " временами", " никогда". Вторая: " раньше (чем что-либо)", " одновременно", " позже (чем что-либо)". Эпистемические модальности (от греч. episteme - знание). Эпистемологией в западной философской литературе называют теорию познания. Поэтому данную разновидность модальных суждений можно было бы называть еще и теоретико-познавательной. Здесь отмечается степень изученности явлений, о которых говорится в высказываниях. В зависимости от того, идет ли речь об уровне знания или об уровне убежденности, различают две разновидности эпистемической модальности. Одна из них выражается операторами: " доказуемо" (" верифицируемо"), " неразрешимо", " опровержимо" (" фальсифицируемо"). Для другой операторами служат: " отстаивает" (" убежден"), " сомневается", " отвергает".
Таким образом… Глава 4. Умозаключение Из суждений составляется более сложная и важная в теоретическом отношении форма логического мышления - умозаключение. Иногда к ним прилагают название " силлогизм", хотя, строго говоря, силлогизм - только одна из разновидностей умозаключения, правда, наисложнейшая и, пожалуй, самая распространенная. С помощью умозаключения мысли, выражаемые через суждения, связываются между собой, образуя новую мысль, которую можно рассматривать результатом их сцепления, взаимодействия. Возьмем для наглядности такое рассуждение:
Если число 64 делится на 3 и на 4, то оно делится на 12. Число 64 не делится на 12. Следовательно, число 64 не делится на 3 или на 4.
Это так называемая усложненная контрапозиция. При такой схеме рассуждения из высказываний, составляющих первые две строчки, с необходимостью вытекает третье (третья строчка). Мы могли бы взять и какие-то другие явления, связанные подобным же образом, например: если дует сильный ветер и падает снег, то значит на улице пурга; но пурги нет; следовательно, на улице не падает снег или нет ветра. Умозаключение - это форма мышления, позволяющая из одного или нескольких суждений, называемых посылками, извлекать с помощью правил логики новое суждение - заключение. Когда исходные высказывания в правильно построенном умозаключении истинны, то и вывод его тоже обязательно будет истинным суждением. Понятия и суждения как формы мышления формируются большей частью за пределами логики, которая берет их уже готовыми. Умозаключение же формируется из суждений именно по логическим правилам. На стадии умозаключения о вещах можно рассуждать, не обращаясь к ним самим. Достаточно иметь о них несколько верных высказываний. По этой причине, опираясь на правила умозаключения, наука получает возможность рассуждать о природных явлениях теоретически, постигать те их стороны, которые скрыты за внешней, доступной наблюдению поверхностью, проникать в недоступные природные глубины, обращаться мыслью в такие запредельные дали, которые можно изучать лишь умозрительно. Палеонтологам иной раз хватает одной кости для воссоздания всего облика давно вымерших животных. Сходные достижения имеются во всех других науках. Например, Демокрит догадался о существовании атомов, наблюдая, как истираются со временем каменные ступени храма. Много великих и малых тайн природы разгадано благодаря тонким и сложным рассуждениям. Цепь умозаключений выстраивается порой в целые обширные теории. Всю совокупность известных логике умозаключений принято классифицировать по двум основаниям: во-первых, по числу посылок, во-вторых, по направлению движения мысли. Что касается числа посылок, то с этой точки зрения весь их массив распадается на две неравновесные части, те, у которых посылка всего одна, и остальные. Первые называются непосредственными умозаключениями. Они относятся к наиболее простым их разновидностям. В них происходит простая смена логической формы того или иного высказывания, содержание же остается неизменным. Помимо самой посылки в таком преобразовании участвуют также и логические законы мышления. Во вторых, опосредствованных, умозаключениях посылок более одной, они сложнее и многообразнее первых. По другому основанию умозаключения делят на дедуктивные, в которых мышление движется от общих положений к частным выводам, индуктивные, делающие обобщения из частных наблюдений, и такие, у которых уровень общности посылок и заключения одинаков; к ним, прежде всего, относится аналогия и некоторые суждения с отношениями; иногда последнюю группу объединяют под названием традуктивные умозаключения.
§17. (1) Непосредственные умозаключения Все умозаключения этого рода относятся к разряду дедуктивных. Часть из них уже рассматривалась нами, когда речь шла о логическом квадрате; возвращаться к ним нет необходимости. Помимо них есть еще четыре разновидности таких умозаключений - превращение, обращение, противопоставление предикату, противопоставление субъекту. Превращение - логическая операция, изменяющая качество суждения без изменения его количества. В художественных и научных текстах иногда прибегают к двойным отрицаниям: " Политика не мо- жет не первенствовать", " Ссора возникла не без причины". Подобные выражения встречаются порой в литературе. Чаще всего они представляют собой стилистический прием, подчеркивающий определенные оттенки смысла предложений. Но для логики важно только то, что в результате таких переформулирований меняется качество суждения, значит, меняется логическая форма: утвердительное по смыслу высказывание (" Политика иногда первенствует", " Ссора имеет причину") подается как отрицательное. Может быть и наоборот: отрицательное высказывание удобнее выразить в утвердительной форме (вместо " Линия не прямая" " Линия кривая", вместо " Договор не письменный", " Договор устный", вместо " Преступник не является совершеннолетним" " Преступник несовершеннолетний". В рассуждениях нельзя путать логическую форму с содержанием, ведь одно может меняться, когда другое остается неизменным. Поэтому логика разрабатывает для преобразования качества суждений специальные правила. Они чрезвычайно просты. При превращении утвердительных суждений частица " не" вносится одновременно в связку и в предикат (" Яблоко зрелое" - " Яблоко не является незрелым"); можно было бы проделать то же самое и в обратном порядке. При превращении отрицательных суждений частица " не" переносится из связки в предикат (" Зима не является снежной" - " Зима бесснежная"). Операция превращения возможна для всех видов суждений - A, E, I, O. Схемы для этой операции и могут быть представлены следующим образом. Общеутвердительное суждение: S a P => S e -P. Общеотрицательное суждение: S e P => S a -P. Частноутвердительное суждение: S i P => S o -P. Частноотрицательное суждение: S o P => S i -P. Черта над (перед) символом здесь и далее будет обозначать его отрицание; читается как не-P. Обращение - операция перестановки субъекта суждения и предиката местами без изменения качества суждения. Обращение, как правило, вызывает изменение количества суждения: частное становится общим, общее делается частным. Но иногда обходится без смены количественных характеристик. Тогда операцию обращения называют чистой или простой. Этот вид умозаключения возможен не для всех, а только для трех видов категорических суждений - A, E, I. Так как процедура обращения зависит от распределенности субъекта и предиката, то из-за этого для каждого вида суждений приходится разрабатывать свои правила. Общеутвердительное суждение S a P при обращении, как правило, меняет количество, становится частным, поскольку предикат в нем чаще всего не распределен. S a P => P i S. Так из суждения " Все инспекторы таможни - государственные служащие" в результате обращения получится: " Некоторые государственные служащие - инспекторы таможни". Однако у этого правила есть исключение. Оно относится к суждениям с обоими распределенными терминами, что в свою очередь имеет место тогда, когда они равнозначны. В этом случае изменения количества не происходит. S a P => P a S. Например, " Эверест - наивысшая точка Земли" (" Наивысшая точка Земли - Эверест"); " Кабинет министров - правительство" (" Правительство - кабинет министров)". Однако правилом надо все-таки считать, что обращение общеутвердительного суждения не является простым, то есть, приводит к суждению частноутвердительному; даже если в каких-то исключительных случаях правильно будет образовывать обращенное общеутвердительное суждение, все равно истинность и частноутвердительного тоже сохранится в силе. Если, следовательно, перед нами общеутвердительное суждение, то мы никогда не сделаем ошибки, если образуем из него обращенное частноутвердительное суждение. Общеотрицательное суждение S e P. В нем оба термина всегда распределены, поэтому его обращение всегда простое, субъект и предикат всего лишь меняются местами. S e P => P e S. " Никакой богослов не материалист" (" Никакой материалист не богослов)"; " Дельфин не рыба" (" Рыба не дельфин"). Частноутвердительное суждение S i P. Его обращение может быть простым, но может сопровождаться и изменением количества. Обращение бывает простым, когда субъект и предикат находятся в отношении пересечения и вследствие этого оба термина не являются распределенными. S i P => P i S. " Некоторые романы написаны русскими поэтами" (" Некоторые произведения русских поэтов - романы"). Но когда предикат образует понятие, подчиненное субъекту, то тогда предикат является распреде- ленным термином и, занимая после обращения место субъекта, делает получившееся суждение об- щеутвердительным. S i P => P a S. Например, " Некоторые люди сангвиники" (" Все сангвиники - люди"). " Некоторые правонарушители - преступники" (" Все преступники - правонарушители"). Однако и здесь, как и в случае общеутвердительных суждений, за правило надо признавать только случай, когда предикат не распределен и обращение дает частноутвердительное суждение. Такой итог будет истинным всегда, обращенное же общеутвердительное суждение будет истинным только иногда. Частноотрицательные суждения не обращаются, потому что им соответствует целых три возможных варианта соотношений по объему между S и P. Причем в случае, когда субъект подчиняет себе предикат, после перестановки их местами истинным суждением было бы общеутвердительное: " Некоторые учебники не задачники" => " Все задачники - учебники". Получается, что не всегда можно соблюсти правило, запрещающее изменять качество в процессе обращения частноотрицательного суждения. Противопоставление предикату есть последовательное применение к суждению операции превращения, а затем к полученному результату - операции обращения. В языке такая операция проделывается довольно часто, хотя не всегда осознается как специфическая логическая процедура. Допустим, нам сказали: " Корова - парнокопытное животное". Отсюда можно сделать вывод: " Никакое непарнокопытное животное не есть корова". Достаточно немного вдуматься в смысл сказанного и станет понятно, что такой вывод действительно вытекает из первого утверждения. Мы получим его в строгом виде, если сначала превратим исходное суждение, а затем полученный результат обратим: " Корова - парнокопытное животное" => " Корова не есть непарнокопытное животное" => " Никакое непарнокопытное животное не есть корова". Правда, в большинстве случаев получаются неупотребительные, трудные для понимания языковые конструкции; исключения могут составлять лишь те предложения, в которых фигурируют отрицательные понятия " беспристрастный", " непарнокопытный", " несчастье", " невменяемый" и т.п. Тем не менее, в логике разработаны правила преобразования такого рода для всех типов суждений, потому что итог всегда получается правильный. Насколько же это приемлемо для употребления в естественных языках, вопрос для науки второстепенный. Тем более что при использовании символов вместо слов все неудобства пропадают. В символической логике эту операцию называют контрапозицией. Противопоставление предикату можно проводить с суждениями A, E. O. Частноутвердительные суждения не подвергаются этой операции, так как после превращения они делаются частноотрицательными и после этого их, согласно правилам обращения, нельзя обращать, Приведем несколько примеров преобразования высказываний по правилам противопоставления предикату. Одно общеотрицательное суждение: " заполярные порты не являются южными" - S e P. " заполярные порты являются неюжными" - S a -P. " некоторые неюжные порты являются заполярными" -P i S. И одно частноотрицательное: " некоторые люди не являются сангвиниками" - S o P. " некоторые люди являются несангвиниками" - S i -P. " Все несангвиники - люди" -P a S. Противопоставление субъекту представляет собой последовательное применение к суждению операции обращения, затем к полученному результату - операции превращения. В естественном употреблении это преобразование мысли чаще всего встречается в отрицательных суждениях, к тому же использующих отрицательные понятия: " Неделимая частица химического вещества не есть молекула" => " Молекула - делимая частица химического вещества"; " Бескорыстие - доброта" => " Доброта не есть корысть". Мы ограничимся одним подробно расписанным примером проведения такой операции: " Верующий не является атеистом" S e P. " Атеист не является верующим" P e S. " Атеист - неверующий" P a -S. Эта операция применима к суждениям A, E, I и неприменима к суждениям O, так как частноотрицательные суждения не обращаются.
§18. (3) Простой категорический силлогизм Теория простого категорического силлогизма представляет собой, пожалуй, самую сложную и развитую часть традиционной логики. Этот ее раздел был разработан Аристотелем в практически законченном виде, прежде всего в его двух книгах под названием " Аналитика". Позднее учение о силлогизмах было внимательно изучено средневековыми схоластами, которые изложили его в компактной форме. Греческое слово sillogismos переводится как сосчитывание. Аристотель называет им не только простой категорический силлогизм, как это принято в большинстве учебников теперь. Нередко оно у него обозначает вообще всякое умозаключение. В нашем учебнике мы только в этом разделе будем придерживаться современного употребления этого слова, не оговаривая каждый раз, что речь идет только о простом категорическом силлогизме. Но в других разделах силлогизмами будут называться и другие умозаключения тоже. Силлогистическое умозаключение составляется из двух категорических суждений, у которых имеется общий термин. Этот термин, называемый средним, опосредствует отношение между другими, крайними терминами суждений, создает между ними связь, которая отмечается в заключении. Сам же средний термин в заключение не попадает. Он играет роль посредника между крайними терминами. Примером силлогизма может послужить следующее умозаключение: (1) Фаянсовая посуда покрывается глазурью. P a M (2) Данная чашка не покрыта глазурью. S e M (3) Данная чашка - не фаянсовая посуда. S e P Строки (1) и (2) представляют собой посылки, (3) - заключение. В первой посылке отмечается связь понятия " фаянсовая посуда" и понятия " глазурованное", во второй - какой-то конкретной (единичной) чашки с тем же " глазурованным". Таким образом, " глазурованное" выступает средним термином. Из знания отношения к нему двух других терминов можно сделать заключение о том, как они соотносятся между собой: данная чашка - не фаянсовая. Субъект заключения (у нас это " данная чашка") принято обозначать буквой S. Его называют мень- шим термином и в соответствии с этим посылку, в которой он содержится, - меньшей; она всегда ставится на втором месте (во второй строке). Предикат заключения (в нашем случае это " фаянсовая посуда") обозначают латинской буквой P и называют большим термином; отсюда посылка, где он содержится, получает название " большой"; ее записывают первой строкой. Обозначением для среднего термина служит латинская М. Этот термин: как уже сказано, имеется в обеих посылках. Обратите внимание на аббревиатуру, помещенную против каждого суждения в силлогизме. Мень- шая посылка и заключение обозначены там как общеотрицательные суждения S e M и S e P. Под S у нас имеется в виду " данная чашка" - понятие единичное. А поскольку у единичных понятий, напомним, всегда участвует весь объем (ибо частей у них просто нет), то суждения с ними на месте субъекта всегда общие и никогда не бывают частными. В теории силлогизма и практике его использования это имеет принципиальное значение. Силлогизмом называют умозаключение об отношении двух терминов, являющихся крайними, на основании их отношения к третьему термину, называемому средним. Разумеется, силлогизм может составляться также и из суждений с иными качественно-количественными характеристиками, чем в приведенном примере. Чисто математически всего воз- можно 256 комбинаций разных категорических суждений, объединенных по три. Однако далеко не все из них образуют силлогизмы. Тех сочетаний, которые приводят к правильным выводам, всего 19. Все правильные силлогизмы принято разбивать на четыре разновидности, называемые фигурами. Они различаются местом среднего термина. В каждой фигуре, в свою очередь, содержится несколько разновидностей силлогизма, называемых модусами. Их символическое представление показано в таблице модусов силлогизма. Первая фигура силлогизма образуется тогда, когда средний термин в большой посылке стоит на месте субъекта, а в меньшей - на месте предиката. В списке модусов они собраны в первой колонке слева. Символ M во всех этих модусах расположен как бы по диагонали. Аристотель называл эту фигуру совершенной. Она является самой наглядной и легко понимается. Объясняется это тем, что ею выражаются самые простые объемные отношения между понятиями-терминами. Маленький термин целиком содержится в среднем, средний целиком входит или целиком не входит в большой термин. Кроме того, только первая фигура допускает общеутвердительные заключения; это значит, что она обладает наивысшей доказательной силой при выведении дедуктивным путем общих законов. Всего у этой фигуры четыре модуса, как это видно из таблицы. Мы приведем здесь в качестве иллюстрации только два из них. Таблица модусов силлогизма Модусы 1 фигуры Модусы 2 фигуры Модусы 3 фигуры Модусы 4 фигуры (1) M a P S a M S a P P e M S a M S e P M a P M a S S i P P a M M a S S i P (2) M e P S a M S e P P a M S e M S e P M i P M a S S i P P a M M e S S e P (3) M a P S i M S i P P e M S i M S o P M a P M i S S i P P i M M a S S i P (4) M e P S i M S o P P a M S o M S o P M e P M a S S o P P e M M a S S o P (5) M o P M a S S o P P e M M i S S o P (6) M e P M i S S o P Все люди (M) смертны (P). M a P Сократ (S) - человек (M). S a M Сократ (S) смертен (P). S a P Преступник (M) не является законопослушным (P). M e P Мошенник (S) - преступник (M). S a M Мошенник (S) не является законопослушным (P). S e P Вторая фигура силлогизма получается тогда, когда средний термин в обеих посылках стоит на месте предиката. Приведенный нами сначала пример с фаянсовой посудой представляет собой как раз второй модус этой фигуры (вторая колонка, вторая строка в списке модусов). Для этой фигуры характерно то, что в ней одна из посылок и заключение всегда отрицательны. Она поэтому чаще всего используется в опровержениях или в доказательствах от противного. Вторая фигура дает четыре правильных модуса. Третья фигура силлогизма включает в себя средний термин на месте субъекта в обеих посылках. Все товары (M) обмениваются на деньги (P). M a P Некоторые товары (M) - изделия (S). M i S Некоторые изделия (S) обмениваются на деньги (P). S i P Эта фигура дает только частные выводы. Но отсюда не следует делать вывод о ее непригодности в науке. Дело в том, что деление на общее и частное является в некоторой мере относительным. Скажем, существует общий закон сохранения и превращения энергии. Он применим ко всем формам движения. Следовательно, его можно распространить с помощью третьей фигуры на некоторые их виды. Но применительно к этим частным видам движения - тепловым, электрическим и прочим - полученные законы являются общими, а не частными. Поэтому данная фигура используется в научном познании не меньше других. Она включает в себя больше всех модусов - шесть. Четвертая фигура силлогизма образуется, когда средний термин в большой посылке на месте предиката, а в меньшей - на месте субъекта. Никакая птица (P) - не млекопитающее (M). P e M Все млекопитающие (M) - позвоночные (S). M a S Некоторые позвоночные (S) - не птицы (P). S o P Эта фигура силлогизма появилась уже после Аристотеля. Ее модусы были изучены учениками великого мыслителя Теофрастом и Эвдемом. А ввел ее в логику в качестве самостоятельной фигуры врач, ученый, исследователь логики К. Гален (130-200 гг.). Иногда эту фигуру считают несамостоятельной, искусственной. В этом есть определенная доля истины. Скажем, для каждой из остальных трех фигур можно сформулировать специальные правила. Мы их уже приводили: соотношения по объему, наличие отрицательной посылки и пр. У четвертой фигуры таких правил нет. Тем не менее, упускать из внимания пять ее модусов не следует, хотя бы ради полноты классификации. В основе силлогистических умозаключений лежит одно, достаточно самооче
|