Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теоретичні відомості. Суттєва різниця електронного спектра металів і напівпровідників, що описана раніше, визначає специфіку поглинання світла напівпровідниками





Суттєва різниця електронного спектра металів і напівпровідників, що описана раніше, визначає специфіку поглинання світла напівпровідниками. Розглянемо власний напівпровідник із шириною забороненої зони Eg, енергетична діаграма якого показана на рис. 8.3.1.

Рис. 8.3.1

Тут Еv — верхній енергетичний рівень заповненої валентної зони. Ев —нижній енергетичний рівень вільної зони або зони провідності. ЕF — рівень Фермі

Очевидно, що Eg=Eв-Ev. При Т¹ 0 в зоні провідності є деяка кількість вільних електронів, а у валентній зоні — така ж кількість дірок. Нехай на зразок падає світло частотою v. Енергія його квантів Eg=hv. Якщо Eg< Eg, то кванти світла поглинаються як електронами, так і дірками. Таке поглинання носить назву поглинання вільними носіями. Оскільки ширина забороненої зони велика в порівнянні з тепловою енергією кТ, то концентрація вільних носіїв мала, що обумовлює також малу інтенсивність поглинання. У цьому випадку більш суттєвим є відбиття світла.

Із зростанням частоти стає можливим ще один механізм ослаблення інтенсивності світла, а саме, при енергіях квантів hv> Eg фотон поглинається електроном, який знаходиться у валентній зоні. Це супроводжується переходом електронів у зону провідності і називається внутрішнім фотоефектом. В результаті внутрішнього фотоефекту концентрація вільних носіїв зростає. А оскільки питома електропровідність пропорційна концентрації носіїв, то внутрішній фотоефект викликає зростання електропровідності. Збільшення електропровідності під дією світла носить назву фотопровідності.

У власних напівпровідниках фотопровідність має біполярний характер, тобто поглинання світла приводить до появи електронів в зоні провідності і рівної їм кількості дірок у валентній зоні.

Можлива також монополярна фотопровідність. Розглянемо домішковий напівпровідник, енергетична діаграма якого зображена на рис. 8.2.2, де Еd – домішковий донорний рівень, розташований у верхній половині забороненої зони. При hv³ Eв-Ed поглинання фотона приводить до збудження електрона, зв'язаного з домішкою, та перехід його в зону провідності. Якщо частота задовольняє умову hv³ Ed-Ev, то енергії фотонів не вистачає для збудження електронів з валентної зони на домішковий рівень. Таким чином, при Ed-Ev³ hv³ Eв-Ed генерується певна кількість вільних носіїв одного знаку — електронів, а фотопровідність має монополярний характер. Очевидно, що при hv³ Ed-Ev генеруються як електрони провідності, так і дірки, тоді домішкова фотопровідність буде біполярна. Аналогічні міркування можна провести також і для акцепторного напівпровідника.

Поряд з генерацією носіїв квантами світла відбувається і зворотний процес, тобто перехід електронів у валентну зону, що називається рекомбінацією. Розрізняють кілька механізмів рекомбінації. Оскільки рекомбінація визначає суттєві прикмети фотопровідності, слід враховувати дві найважливіші з них:

1. Пряма рекомбінація або рекомбінаційна зона — зона, при якій з'єднання електрона з діркою відбуваються завдяки переходові електрона із зони провідності в пустий стан валентної зони. При цьому надлишок енергії електрон розсіює, здебільшого випромінюючи фотон.

 

Рис. 8.3.2

2. Рекомбінація за участю домішок і дефектів. У цьому випадку вільні електрони рекомбінують із зв'язаними дірками на домішках і дефектах, а вільні дірки — із зв'язаними електронами. У результаті процесів фотогенерації та рекомбінації в зразку при неперервному освітленні встановлюється стабільне значення концентрації нерівноважних носіїв, яке й є фотопровідністю.

У даній роботі вивчаються фотоелектричні явища в напівпровідниках на прикладі фотоопору. Будова фотоопору та принцип дії показані на рис. 8.3.3 де 1 - ізолююча підкладка, 2 - фоточутливий шар напівпровідникового матеріалу (здебільшого PbS, CdS, CaAs), 3 - металеві контакти.

Рис. 8.3.3

При опроміненні шару напівпровідника світлом завдяки внутрішньому фотоефекті опір зразка зменшується, а струм у колі відповідно зростає. Ця властивість фотоопорів обумовлює їх широке застосування в схемах автоматики як приймачів, так і датчиків випромінювання.







Дата добавления: 2014-11-10; просмотров: 497. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия