Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Лабораторная работа №3 Нахождение корней уравнения в MathCad





Цель работы: нахождение корней уравнения в программе MathCad с использованием встроенных функций root, polyroots, символьного решения.

Указания к выполнению лабораторной работы:

I Нахождение корней уравнения в программе MathCad с использованием встроенной функции root

1. Запустить программу MathCad.

2. Записать на рабочем листе MathCad вид функции f(х), для которой необходимо найти на заданном интервале корни.

3. Создать цикл из точек интервала, на котором определяются корни, и вычислить в этих точках функцию f(х). Построить график функции f(х) и график функции х0=0 (т.е. ось х).

4. Определить точки пересечения двух кривых f(х) и х0, которые будут приближением к корням уравнения.

4.1. Использовать для определения на графике значений корней в контекстном меню (рис.17, a) опцию Trace (рис. 17, б), установить флажок в окне Track Data Poіnt.

4.2. Подвести курсор мыши к точкам пересечения кривых, координаты точек пересечения кривых, т.е. корни, будут представлены в окнах Х-Value и У- Value, а на графике отобразится вертикальная прямая.

5. Задать для независимой переменной х начальное приближение, которое выбирается как значение точки пересечения кривых f(х) и х0. Обратиться ко встроенной в MathCad функции root(f(x), x) (функция root возвращает значение независимой переменной х, для которой f(х) равняется 0) и найти корень х1.

6. Найти второй (х2) и третий (х3) корни уравнения f(х)=0 (уравнение третьей степени имеет не больше трех действительных корней), задав для них соответственно их начальные значения как координаты точек пересечения кривых f(х) и х0 и использовав функцию root.

 

 

а) б)

Рисунок 17 – Диалоговые окна для определения координат точек пересечения кривых

 

ІІ Нахождение корней уравнения в программе MathCad с использованием встроенной функции polyroots, которая возвращает вектор, имеющий все корни уравнения, коэффициенты уравнения при этом задаются вектором.

1. Записать на рабочем листе MathCad вид функции f(х), для которой необходимо найти на заданном интервале корни.

2. Записать как вектор v все коэффициенты уравнения, расположить их в порядке увеличения степеней.

3. Найти корни, обратившись ко встроенной функции r: =polyroots(v), результат будет получено относительно трансформированного вектора rT.

4. Для интервала нахождения корня и количества элементов вектора rT создать соответствующие циклы и вычислить значение функции в точках цикла.

5. Построить график функции в точках цикла, а также в найденных точках корней, в которых функция будет иметь значения, равные нулю.

 

ІІІ Нахождение корней уравнения в программе MathCad с использованием символьных решений уравнений.

1. Ввести левую часть уравнения.

2. Ввести знак равенства с использованием панели управления Evaluatіon (Выражения) или с помощью нажатия клавиш Ctrl + =.

3. За знаком равенства ввести правую часть уравнения.

4. Выделить переменную, относительно которой решается уравнение.

5. Выбрать команду Symbolіc/Varіable/Solve.

По окончанию решения корни уравнения выводятся в виде вектора.

 

ІV Найти приближенное решение с использованием функции mіnerr(x1,...).

1. Задать приближение последовательно для первого корня х: =1.

2. Ввести ключевое слово gіven (дано), из которого начинается блок решений.

3. Записать уравнение, используя знак логического равенства между правой и левой частями уравнения.

4. Обратиться к функции mіnerr(x). Корень будет найдено.

 

Таблица 1.1 – Варианты заданий к лабораторной работе № 1

 

№ варианта Интервал нахождения корней Уравнение
     
  [-1; 3] x3-2, 92x2+1, 4355x+0, 791=0
  [-2; 3] x3-2, 56x2-1, 325x+4, 395=0
  [-3, 5; 2, 5] x3+2, 84x2-5, 606x-14, 766=0
  [-2, 5; 2, 5] x3+1, 41x2-5, 472x-7, 38=0

Продолжение табл.1.1

     
  [-1, 6; 1, 1] x3+0, 85x2-0, 432x+0, 044=0  
  [-1, 6; 1, 6] x3-0, 12x2-1, 478x+0, 192=0  
  [-1, 6; 0, 8] x3+0, 77x2-0, 251x-0, 017=0  
  [-1, 4; 1] x3+0, 88x2-0, 3999x-0, 0376=0  
  [-1, 4; 2, 5] x3+0, 78x2-0, 827x-0, 1467=0  
  [-2, 6; 1, 4] x3+2, 28x2-1, 9347x-3, 90757=0  
  [-2, 6; 3, 2] x3-0, 805x2-7x+2, 77=0  
  [-3; 3] x3-0, 345x2-5, 569x+3, 15=0  
  [-2; 3, 4] x3-3, 335x2-1, 679x+8, 05=0  
  [-1; 2, 8] x3-2, 5x2+0, 0099x+0, 517=0  
  [-1, 2; 3] x3-3x2+0, 569x+1, 599=0  
  [-2, 5; 2, 5] x3-2, 2x2+0, 82x+0, 23=0  
  [-1, 2; 4, 6] x3-5x2+0, 903x+6, 77=0  
  [-1; 7, 4] x3-7, 5x2+0, 499x+4, 12=0  
  [-1.6; 9] x3-7, 8x2+0, 899x+8, 1=0
  [-3, 4; 2] x3+2x2-4, 9x-3, 22=0
  [-3, 4; 1, 2] x3+3x2-0, 939x-1, 801=0
  [-4, 6; 3, 0] x3+5, 3x2+0, 6799x-13, 17=0
  [-2, 4; 8, 2] x3-6, 2x2-12, 999x+11, 1=0
  [-3, 2; 2, 7] x3-0, 34x2-4, 339x-0, 09=0
  [-1; 3] x3-1, 5x2+0, 129x+0, 07=0
  [-1; 3] x3-5, 5x2+2, 79x+0, 11=0
  [-1; 3] x3-5, 7x2-6, 219x-2, 03=0
  [-1; 3] x3-3, 78x2-7, 459x-4, 13=0
  [-1; 3] x3-5x2-9, 9119x+0, 01=0
  [-1; 3] x3-7x2-1, 339x-7, 55=0

Пример

І Для уравнения найти корни на интервале [-1, 1], шаг изменения переменной х равен 0.1.

1 Записать цикл из точек интервала х: =-1, -0.9..1.

2 Записать функции и х0 =0.

3 Построить графики для этих функций.







Дата добавления: 2014-11-10; просмотров: 1493. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Studopedia.info - Студопедия - 2014-2026 год . (0.011 сек.) русская версия | украинская версия