Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Лабораторная работа №9 Решение обычных дифференциальных уравнений в MathCad





 

Цель работы: с использованием встроенных функций и блочной структуры найти решение обычных дифференциальных уравнений.

Указания к выполнению лабораторной работы:

I Найти решение обычного дифференциального уравнения y /= f (x, y) с использованием «блока решений».

1. Ввести ключевое слово given (дано), с которого начинается блок решений.

2. Записать уравнение, используя знак логического равенства между правой и левой частями уравнения с панели управления Evaluation (Выражения).

3. Задать начальные значения переменной, которая есть в уравнении.

4. Ввести ключевое слово Odesolve, которым заканчивается блок решений, то есть присвоить функции, относительно которой решается уравнение, значение Odesolve с параметрами интервала интегрирования.

5. Определить значение найденной функции в точках интервала, для чего создать соответствующий цикл.

6. Построить и отформатировать график найденной функции в точках интервала.

 

Таблица 8.1 – Варианты задания к лабораторной работе №8

Номер варианта Уравнение f(x, y) Начальные условия Интервал нахождения решения Шаг изменения
         
  y(1)=1 [1, 10]  
  tg(x)t(y) y(0)=0 [0, 5] 0.5
  y(1)=1 [1, 7]  
  y(1)=1 [1, 5] 0.25
  cos(x-2y)-cos(x+2y) y(0)=p/4 [0, 4p] p/2
  2e-xcos(x)-y y(0)=0 [0; 3, 5] 0, 1
  e-2ycos(x)-y y(0)=0 [0; 1] 0, 05
  lnô x+2, 5xsin(x)ô y(0)=2, 5 [1; 3, 5] 0, 2
  e35ysin(x)+y y(0)=0 [0; 1, 5] 0, 1
  x2ln(x+y2) y(0)=3, 5 [1, 2; 2, 4] 0, 08
  y(0)=3, 6 [4, 1; 6, 7] 0, 1
  sin(x)+cos(y2) y(0)=2, 2 [0, 8; 3, 2] 0, 1
  e-2xsin(x+y) y(0)=16, 2 [4, 8; 6, 4] 0, 1
  0, 7y+x× ln(x+y) y(0)=2, 5 [12, 4; 14, 1] 0, 08
  0, 5x+ye(x-y) y(0)=3, 1 [8, 5; 9, 7 ] 0, 05
  x2+ycos(x) y(0)=1, 4 [0; 2, 3] 0, 1
  y2-exy y(0)=1, 7 [2, 4; 3, 5] 0, 05
  xy-e(x-y) y(0)=2, 8 [1, 6; 3, 1] 0, 1
  sin(xy)-e2x y(0)=5, 7 [14, 5; 16, 3] 0, 05
  y(0)=1, 6 [5, 2; 6, 8] 0, 1
  y/ln(y) y(2)=1 [2; 5] 0, 25
  e(x+y)-e(x-y) y(0)=0 [0; 2.5] 0, 1
  y(p/4)=0 [p/4, 3p] p/8
  y(1)=0 [1; 4] 0.3
  sin(3x)-y× tg(3x) y(0)=1/3 [0, 4] 0, 25
  cos(x-4y)-cos(x+4y) y(0)=p/4 [0, 4p] p/2
  2e-xcos(x)y y(0)=0 [0; 3, 5] 0, 1
  e-2ycos(x)+y y(0)=0 [0; 1] 0, 05
  lnô x+sin(x)ô y(0)=2, 5 [1, 5; 3, 5] 0, 2
  ey+2sin(x) y(0)=0 [0; 1, 5] 0, 1

 

 

Пример

I Найти решение обычного дифференциального уравнения на интервале [0, 100]. Функция имеет такие начальные условия: у(0)=1.

1 Ввести ключевое слово Given.

2 Записать, используя логический знак равенства, следующее выражение:

 

.

3 Начальное условие записать следующим образом, используя логический знак равенства:

у(0)=1.

4 Вычислить числовое решение задачи через использование функции Odesolve:

у: =Odesolve(х, 100).

5 Создать цикл t: =0,..10для определения точек интервала

t: =0,..10.

6 Построить график функции в точках интервала и отформатировать его.

 

 

Рисунок 26-

График функции

Контрольные вопросы

1. Какие встроенные функции позволяют найти решение обычных дифференциальных уравнений?

2. Нужно ли обязательно задавать начальные условия для решения обычных дифференциальных уравнений?

3. Как влияет на результат количество точек разбивки интервала интегрирования обычных дифференциальных уравнений?

 

 








Дата добавления: 2014-11-10; просмотров: 838. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия