Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Лабораторная работа №9 Решение обычных дифференциальных уравнений в MathCad





 

Цель работы: с использованием встроенных функций и блочной структуры найти решение обычных дифференциальных уравнений.

Указания к выполнению лабораторной работы:

I Найти решение обычного дифференциального уравнения y /= f (x, y) с использованием «блока решений».

1. Ввести ключевое слово given (дано), с которого начинается блок решений.

2. Записать уравнение, используя знак логического равенства между правой и левой частями уравнения с панели управления Evaluation (Выражения).

3. Задать начальные значения переменной, которая есть в уравнении.

4. Ввести ключевое слово Odesolve, которым заканчивается блок решений, то есть присвоить функции, относительно которой решается уравнение, значение Odesolve с параметрами интервала интегрирования.

5. Определить значение найденной функции в точках интервала, для чего создать соответствующий цикл.

6. Построить и отформатировать график найденной функции в точках интервала.

 

Таблица 8.1 – Варианты задания к лабораторной работе №8

Номер варианта Уравнение f(x, y) Начальные условия Интервал нахождения решения Шаг изменения
         
  y(1)=1 [1, 10]  
  tg(x)t(y) y(0)=0 [0, 5] 0.5
  y(1)=1 [1, 7]  
  y(1)=1 [1, 5] 0.25
  cos(x-2y)-cos(x+2y) y(0)=p/4 [0, 4p] p/2
  2e-xcos(x)-y y(0)=0 [0; 3, 5] 0, 1
  e-2ycos(x)-y y(0)=0 [0; 1] 0, 05
  lnô x+2, 5xsin(x)ô y(0)=2, 5 [1; 3, 5] 0, 2
  e35ysin(x)+y y(0)=0 [0; 1, 5] 0, 1
  x2ln(x+y2) y(0)=3, 5 [1, 2; 2, 4] 0, 08
  y(0)=3, 6 [4, 1; 6, 7] 0, 1
  sin(x)+cos(y2) y(0)=2, 2 [0, 8; 3, 2] 0, 1
  e-2xsin(x+y) y(0)=16, 2 [4, 8; 6, 4] 0, 1
  0, 7y+x× ln(x+y) y(0)=2, 5 [12, 4; 14, 1] 0, 08
  0, 5x+ye(x-y) y(0)=3, 1 [8, 5; 9, 7 ] 0, 05
  x2+ycos(x) y(0)=1, 4 [0; 2, 3] 0, 1
  y2-exy y(0)=1, 7 [2, 4; 3, 5] 0, 05
  xy-e(x-y) y(0)=2, 8 [1, 6; 3, 1] 0, 1
  sin(xy)-e2x y(0)=5, 7 [14, 5; 16, 3] 0, 05
  y(0)=1, 6 [5, 2; 6, 8] 0, 1
  y/ln(y) y(2)=1 [2; 5] 0, 25
  e(x+y)-e(x-y) y(0)=0 [0; 2.5] 0, 1
  y(p/4)=0 [p/4, 3p] p/8
  y(1)=0 [1; 4] 0.3
  sin(3x)-y× tg(3x) y(0)=1/3 [0, 4] 0, 25
  cos(x-4y)-cos(x+4y) y(0)=p/4 [0, 4p] p/2
  2e-xcos(x)y y(0)=0 [0; 3, 5] 0, 1
  e-2ycos(x)+y y(0)=0 [0; 1] 0, 05
  lnô x+sin(x)ô y(0)=2, 5 [1, 5; 3, 5] 0, 2
  ey+2sin(x) y(0)=0 [0; 1, 5] 0, 1

 

 

Пример

I Найти решение обычного дифференциального уравнения на интервале [0, 100]. Функция имеет такие начальные условия: у(0)=1.

1 Ввести ключевое слово Given.

2 Записать, используя логический знак равенства, следующее выражение:

 

.

3 Начальное условие записать следующим образом, используя логический знак равенства:

у(0)=1.

4 Вычислить числовое решение задачи через использование функции Odesolve:

у: =Odesolve(х, 100).

5 Создать цикл t: =0,..10для определения точек интервала

t: =0,..10.

6 Построить график функции в точках интервала и отформатировать его.

 

 

Рисунок 26-

График функции

Контрольные вопросы

1. Какие встроенные функции позволяют найти решение обычных дифференциальных уравнений?

2. Нужно ли обязательно задавать начальные условия для решения обычных дифференциальных уравнений?

3. Как влияет на результат количество точек разбивки интервала интегрирования обычных дифференциальных уравнений?

 

 








Дата добавления: 2014-11-10; просмотров: 838. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

Studopedia.info - Студопедия - 2014-2026 год . (0.011 сек.) русская версия | украинская версия