Студопедия — Рассеяние энергии электрического поля в диэлектриках
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Рассеяние энергии электрического поля в диэлектриках






Под действием электрического поля в диэлектрике развиваются два основных процесса: поляризация и сквозная электропроводность. Развитие этих процессов может привести к рассеянию энергии электрического поля в диэлектрике. Так, под действием электрического поля свободные носители заряда набирают кинетическую энергию и, сталкиваясь с молекулами вещества, передают им эту энергию. Таким образом, энергия электрического поля трансформируется в тепловую энергию материала. Кроме того, в случае, когда структурные единицы вещества (молекулы) полярны, внешнее электрическое поле совершает работу по повороту диполей по полю, и, как следствие, энергия поля вновь рассеивается в материале.

В идеальном диэлектрике сдвиг фаз между напряжением и реактивной составляющей тока равен 90 градусам. В реальном диэлектрике появляется активная составляющая тока. Поэтому векторная диаграмма токов и напряжений выглядит, как показано на рисунке 3.9.

Зная величину напряжения, круговую частоту и емкость, можно определить реактивную составляющую тока:

Ip=U´ wґC (1)

Тогда активная составляющая тока определится как:

Ia=Ipґ tgd (2)

Рассеиваемую мощность можно определить следующим образом:

Р=U´ Ia= U´ w´ C´ tgd (3)

 

Рисунок 3.9. Векторная диаграмма токов и напряжений в реальном диэлектрике

 

Таким образом, tgd можно использовать в качестве меры потерь энергии поля в диэлектрике. Рассмотрим зависимости tgd от температуры в полярных и неполярных диэлектриках.

С увеличением температуры концентрация носителей заряда в диэлектрике повышается, поскольку увеличивается вероятность выхода иона из потенциальной ямы (см. лабораторную работу 2). Поэтому вероятность столкновения носителя заряда со структурной единицей вещества также растет. Следовательно, при увеличении температуры потери на сквозную электро­проводность возрастают. В неполярных диэлектриках реализуется упругая электронная или упругая ионная поляризация. Как известно, при развитии упругих процессов потерь энергии нет, поэтому в неполярных диэлектриках основной вид потерь - потери за счет сквозной электропроводности.

В полярных диэлектриках, помимо потерь на сквозную электропроводность, появляются потери на поляризацию, то есть внешнее электрическое поле совершает работу по повороту диполей. Эту работу можно оценить как произведение момента сил (М) на угол поворота (f). При увеличении температуры подвижность диполей растет, и момент сил, необходимый для поворота на один и тот же угол, снижается. В то же время, рост подвижности диполей при повышении температуры ведет к увеличению угла поворота под действием постоянного момента сил (рисунок 3.10). Таким образом, работа, совершаемая электрическим полем на поворот диполей, при росте температуры вначале увеличивается, а затем уменьшается.

Помимо потерь энергии поля на поляризацию, в полярных диэлектриках существуют потери на сквозную электропроводность. Важно отметить, что хотя качественно процесс электропроводности в полярных диэлектриках не отличается от процесса электропроводности в неполярных диэлектриках, количественные различия имеются. Так, в полярных диэлектриках концентрация носителей заряда, как правило, повышена, поскольку из-за полярности молекул основного материала очистка его от примесей затруднена.

 

Рисунок 3.10ю Зависимость угла поворота диполей (f), момента сил, необходимых для поворота, (М) и работы по повороту диполя электрическим полем (А) от температуры

 

 







Дата добавления: 2014-11-10; просмотров: 653. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия