Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод наименьших квадратов. Если некоторая физическая величина зависит от другой величины, то эту зависимость можно исследовать





Если некоторая физическая величина зависит от другой величины, то эту зависимость можно исследовать, измеряя y при различных значениях x. В результате измерений получается ряд значений:

;

.

По данным такого эксперимента можно построить график зависимости . Полученная кривая дает возможность судить о виде функции . Однако постоянные коэффициенты, которые входят в эту функцию, остаются неизвестными. Оптимальный подход к решению подобных задач возможен на основе применения метода наименьших квадратов.

Суть метода наименьших квадратов состоит в том, что наивероятнейшими значениями аргументов искомой аналитической зависимости будут те, при которых сумма квадратов отклонений экспериментальных значений функции от значений самой функции y, т.е. является наименьшей.

На практике этот метод наиболее часто (и наиболее просто) используется в случае линейной зависимости, т.е. когда или .

Линейная зависимость очень широко распространена в физике. И даже когда зависимость нелинейная, обычно стараются строить график так, чтобы получить прямую линию. Например, если предполагают, что показатель преломления стекла n связан с длиной λ световой волны соотношением , то на графике строят зависимость n от .

Для начала рассмотрим зависимость (прямая, проходящая через начало координат). Составим величину – сумму квадратов отклонений экспериментальных точек от прямой

.

Величина всегда положительна и оказывается тем меньше, чем ближе к прямой лежат экспериментальные точки. Метод наименьших квадратов утверждает, что для k следует выбирать такое значение, при котором имеет минимум

или

. (16)

Вычисление показывает, что среднеквадратичная ошибка определения величины k при этом равна

. (17)

Теперь можно рассмотреть более трудный случай, когда точки должны удовлетворить формуле .

Задача состоит в том, чтобы по имеющемуся набору значений найти наилучшие значения a и b.

Составляя квадратичную форму , равную сумме квадратов отклонений точек от прямой

определяют значения a и b, при которых имеет минимум

,

.

Совместное решение этих уравнений дает

, (18)
. (19)

Среднеквадратичные ошибки определения a и b равны

, (20)
. (21)

При обработке результатов измерения этим методом удобно все данные сводить в таблицу, в которой предварительно подсчитываются все суммы, входящие в формулы (16) – (21). Формы этих таблиц приведены в рассматриваемых ниже примерах.

Пример 1. Исследовалось основное уравнение динамики вращательного движения (прямая, проходящая через начало координат). При различных значениях момента M измерялось угловое ускорение ε некоторого тела. Требуется определить момент инерции этого тела. Результаты измерений момента силы и углового ускорения занесены во второй и третий столбцы таблицы 2.

 

Таблица 2. Результаты эксперимента

n
  1.44 0.52 2.0736 0.7488 0.039432 0.001555
  3.12 1.06 9.7344 3.3072 0.018768 0.000352
  4.59 1.45 21.0681 6.6555 0.006693
  5.90 1.92 34.8100 11.3280 0.002401
  7.45 2.56 55.5025 19.0720 0.073725 0.005435
123.1886 41.1115 0.016436

Используя линейную зависимость

,

по формуле (16) определяем

,

откуда .

Для определения среднеквадратичной ошибки воспользуемся формулой (17)

.

По формуле (14) имеем

.

Задавшись надежностью , по таблице коэффициентов Стьюдента для , находим и определяем абсолютную ошибку

.

Относительная погрешность

.

Окончательно результат можно записать в виде:

при , .

Пример 2. Вычислить коэффициент линейного расширения металлического стержня по методу наименьших квадратов. Длина металлического стержня от температуры зависит по линейному закону

.

Свободный член определяет первоначальную длину при температуре 0° C, а угловой коэффициент – произведение коэффициента линейного расширения на первоначальную длину .

Результаты измерений и расчетов приведены в таблице 3.

 

Таблица 3. Результаты эксперимента

n l, мм
    150.005   -0.0001429 2.041
    150.040   0 0.0003143 9.878
    150.074   1500.74 -0.0002286 5.224
    150.109     1501.09 0.0002286 5.226
    150.143     4504.29 -0.0003143 9.878
    150.178     7508.90 0.0001429 2.041
  900.549     12.09 34.286
  150.091

 

По формулам (18), (19) определяем

,

.

Отсюда:

.

Найдем ошибку в определении . Так как , то по формуле (14) имеем:

.

Пользуясь формулами (20), (21) имеем

,

.

Тогда

.

Задавшись надежностью , по таблице коэффициентов Стьюдента для , находим и определяем абсолютную ошибку

.

Тогда результат вычисления равен

.

Относительная погрешность

.

Окончательно результат можно записать в виде:

при , .


РАЗДЕЛ 3. Лабораторные работы
по механике И МОЛЕКУЛЯРНой ФИЗИКе







Дата добавления: 2014-11-10; просмотров: 781. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия