Сведения о ключевой информации
Ключ должен являться массивом статистически независимых битов, принимающих с равной вероятностью значения 0 и 1. Нельзя полностью исключить при этом, что некоторые конкретные значения ключа могут оказаться «слабыми», то есть шифр может не обеспечивать заданный уровень стойкости в случае их использования. Однако, предположительно, доля таких значений в общей массе всех возможных ключей ничтожно мала. По крайней мере, интенсивные исследования шифра до сих пор не выявили ни одного такого ключа, ни для одной из известных (т.е. предложенных ФАПСИ) таблиц замен. Поэтому ключи, выработанные с помощью некоторого датчика истинно случайных чисел (СЧ), будут качественными с вероятностью, отличающейся от единицы на ничтожно малую величину. Если же ключи вырабатываются с помощью генератора псевдослучайных чисел, то используемый генератор должен обеспечивать указанные выше статистические характеристики, и, кроме того, обладать высокой криптостойкостью, – не меньшей, чем у самого ГОСТа. Иными словами, задача определения отсутствующих членов вырабатываемой генератором последовательности элементов не должна быть проще, чем задача вскрытия шифра. Кроме того, для отбраковки ключей с плохими статистическими характеристиками могут быть использованы различные статистические критерии. На практике обычно хватает двух критериев, – для проверки равновероятного распределения битов ключа между значениями 0 и 1 обычно используется критерий Неймана Пирсона («χ квадрат»), а для проверки независимости битов ключа – критерий серий. Об упомянутых критериях можно прочитать в учебниках или справочниках по математической статистике, например [5]. Наилучшим подходом для выработки ключей было бы использование аппаратных датчиков СЧ, однако это не всегда приемлемо по экономическим соображениям. При генерации небольшого по объему массива ключевой информации разумной альтернативой использованию такого датчика является и широко используется на практике метод «электронной рулетки», когда очередная вырабатываемая порция случайных битов зависит от момента времени нажатия оператором некоторой клавиши на клавиатуре компьютера. В этой схеме источником случайных данных является пользователь компьютера, точнее – временные характеристики его реакции. За одно нажатие клавиши при этом может быть выработано всего несколько битов случайных данных, поэтому общая скорость выработки ключевой информации при этом невелика – до нескольких бит в секунду. Очевидно, данный подход не годится для получения больших массивов ключей. В случае же, когда необходимо выработать большой по объему массив ключевой информации, возможно и очень широко распространено использование различных программных датчиков псевдослучайных чисел. Поскольку от подобного датчика требуются высокие показатели криптостойкости, естественным является использование в качестве такого генераторагенератора гаммы самого шифра – просто «нарезаем» вырабатываемую шифром гамму на «куски» нужного размера, для ГОСТа – по 32 байта. Конечно, для такого подхода нам потребуется «мастер-ключ», который мы можем получить описанным выше методом электронной рулетки, а с его помощью, используя шифр в режиме генератора гаммы, получаем массив ключевой информации нужного нам объема. Так эти два способа выработки ключей, – «ручной» и «алгоритмический», – дополняют друг друга. Схемы генерации ключей в «малобюджетных» системах криптозащиты информации практически всегда построены по такому принципу. Таблица замен Таблица замен является долговременным ключевым элементом, то есть действует в течение гораздо более длительного срока, чем отдельный ключ. Предполагается, что она является общей для всех узлов шифрования в рамках одной системы криптографической защиты. Даже при нарушении конфиденциальности таблицы замен стойкость шифра остается чрезвычайно высокой и не снижается ниже допустимого предела. Поэтому нет особой нужды держать таблицу в секрете, и в большинстве коммерческих применений ГОСТа так оно и делается. С другой стороны, таблица замен является критически важным элементом для обеспечения стойкости всего шифра. Выбор ненадлежащей таблицы может привести к тому, что шифр будет легко вскрываться известными методами криптоанализа. Критерии выработки узлов замен – тайна за семью печатями и ФАПСИ (ФСО) вряд ли ей поделится с общественностью в ближайшем обозримом будущем. В конечном итоге, для того, чтобы сказать, является ли данная конкретная таблица замен хорошей или плохой, необходимо провести огромный объем работ – многие тысячи человеко- и машино-часов. Единожды выбранная и используемая таблица подлежит замене в том и только в том случае, если шифр с ее использованием оказался уязвимым к тому или иному виду криптоанализа. Поэтому лучшим выбором для рядового пользователя шифра будет взять одну из нескольких таблиц, ставших достоянием гласности. Например, из стандарта на хеш-функцию, она же «центробанковская»; сведения об этих таблицах можно найти в открытой печати и даже в интернете. Для тех же, кто не привык идти легкими путями, ниже приведена общая схема получения качественных таблиц: С помощью той или иной методики вырабатываете комплект из восьми узлов замен с гарантированными характеристиками нелинейности. Таких методик существует несколько, одна из них – использование так называемых бент-функций. Проверяете выполнение простейших «критериев качества» – например, тех, что опубликованы для узлов замены DES. Каждый узел замен может быть описан четверкой логических функций от четырех логических аргументов. Если эти функции, записанные в минимальной форме (т.е. с минимально возможной длиной выражения) окажутся недостаточно сложными, такой узел замены отвергается. Кроме того, отдельные функции в пределах всей таблицы замен должны отличаться друг от друга в достаточной степени. На этом этапе отсеиваются многие заведомо некачественные таблицы. Для шифра с выбранными таблицами строятся различные модели раунда, соответствующие разным видам криптоанализа, и измеряются соответствующие «профильные» характеристики. Так, для линейного криптоанализа строится линейный статистический аналог раунда шифрования и вычисляется «профильная» характеристика – показатель нелинейности. Если она оказывается недостаточной, таблица замен отвергается. Наконец, используя результаты предыдущего пункта, шифр с выбранной таблицей подвергается интенсивным исследованиям – попытке криптоанализа всеми известными методами. Именно этот этап является наиболее сложным и трудоемким. Но если он сделан качественно, то с высокой степенью вероятности можно констатировать, что шифр с выбранными таблицами не будет вскрыт простыми пользователями, и, – не исключено, – окажется достаточно стойким с точки зрения криптоаналитика. Однако здесь имеется закономерность, состоящая в том, что чем больше в шифре раундов, тем меньшее влияние на стойкость всего шифра имеют характеристики стойкости одного раунда. В ГОСТе 32 раунда – больше, чем практически во всех шифрах с аналогичной архитектурой. Поэтому для большинства бытовых и коммерческих применений бывает достаточно получить узлы замен как независимые случайные перестановки чисел от 0 до 15. Это может быть практически реализовано, например, с помощью перемешивания колоды из шестнадцати карт, за каждой из которых закреплено одно из значений указанного диапазона. Относительно таблицы замен необходимо отметить еще один интересный факт. Для обратимости циклов шифрования «32-З» и «32-Р» не требуется, чтобы узлы замен были перестановками чисел от 0 до 15. Все работает даже в том случае, если в узле замен есть повторяющиеся элементы, и замена, определяемая таким узлом, необратима, – однако в этом случае снижается стойкость шифра.
|