Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Расчет параметров магнитного датчика





 

1. ЦЕЛЬ РАБОТЫ

 

Изучить конструкцию и методику расчетов параметров магнитного датчика.

 

2. СОДЕРЖАНИЕ РАБОТЫ

 

2.1. Изучить конструкцию магнитострикционного датчика.

2.2. Изучить методику расчета параметров магнитострикционного датчика.

 

3. КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

 

Основным компонентом большинства магнитных датчиков является тонкоплёночная структура пластины, которая поддерживает электролитический пермаллоевый участок, генерирующий механическую силу и вращающий момент при условии помещения его в магнитное поле. Конструктивно датчики представляют собой магнитострикционные актюаторы и различаются по виду механической поддержки, которая расположена либо на консольных балках, либо балках кручения. Смещение пластины работающего актюатора при приложенном высоком напряжении также очень велико. Меняя толщину одного из электродов, можно управлять направлением изгиба (актюаторы всегда изгибаются в направлении более толстого электрода).

Структурные пластины и поддерживающие балки сделаны из поликристаллических тонких плёнок. Механизм активации проиллюстрирован, используя актюатор первого типа. Три величины L, W, T - это длина, ширина и толщина магнитного участка, соответственно. Консольная балка имеет длину l, ширину w, толщину t.

Рис. 2.1. Устройство магнитного датчика

 

Когда внешнее магнитное поле Hвнеш приложено нормально к плоскости структурной пластины, внутри пермаллоевого участка возникает вектор намагниченности М и он впоследствии взаимодействует с Hвнеш.

 

 

Рис. 2.2. Расчетная схема магнитного датчика

Взаимодействие создаёт вращающий момент (Ммаг) и небольшую силу, воздействующую на свободный конец консольной балки при этом, заставляя её изгибаться.Когда внешнее магнитное поле равно нулю структурная пластина параллельна плоскости подложки. При приложении внешнего подмагничивания, пермаллоевый материал рассматривается как материал, имеющий постоянный плоскопараллельный вектор намагниченности с величиной равной намагниченности насыщения Мнас. При помещении во внешнее магнитное поле генерируется две компоненты силы. Величина обоих, как F1 (которая действует на верхнюю грань), так и F2 (которая действует на нижнюю грань) рассчитывается следующим образом:

, (2.1)

, (2.2)

где H1 и H2 напряжённость магнитного поля на верхней и нижней грани пластины (в текущей конфигурации H1 < H2).

Величины H1 и H2 линейно зависят от соответствующего расстояния до поверхности электромагнитного источника. Структура пластины вместе с пермаллоевым участком имеет толщину T+t. Её момент инерции I пропорционален (T+t)3 и он намного больше по сравнению с моментом инерции консольной балки, которая имеет толщину t. Пластина структуры вместе с пермаллоевым участком, таким образом, рассматривается как твёрдое тело. Основываясь на этом предположении систему сил, упрощают, перемещая F1 до совмещения с F2. Результатом является вращающий момент, действующий против часовой стрелки и сосредоточенная сила, воздействующая на нижнюю грань структурной пластины. Этот результат можно представить как:

, (2.3)

Где сила F = F2 - F1. Величина угла θ рассчитывается исходя из значений величин L, H1 и H2.

Вращающий момент всегда стремится уменьшить полную энергию датчика, выравниванием вектора намагниченности с силовыми линиями внешнего магнитного поля. Поэтому перед применением датчика в автоматизированных системах контроля и исполнительных устройствах необходимо выполнять тарировку действующих усилий на пластинах датчика.

4. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

 

4.1. Ознакомиться с устройством магнитного датчика.

4.2. Получить задание у преподавателя (см. табл. 2.1)

Таблица 2.1

 

Данные Варианты
                   
L (мм) 8, 5                  
W (мм) 3, 5   3, 3     7, 5 8, 5 2, 5 5, 5 8, 2
Т ( мм ) 1, 5   2, 5 2, 8 3, 0 3, 3 3, 5 4, 0 4, 5 5, 5
l ( мм )                    
ω (мм)       8, 5   11, 5 12, 5 13, 5 14, 0 15, 0
t (мм) 1, 8 2, 5 2, 2 2, 8 2, 5 2, 0 3, 0 3, 1 3, 2 3, 3
Мнас (А·Н/м)                    
H1 (А/м)                    
H2 (А/м)                    

 

Данные Варианты
                   
L (мм) 9, 5                  
W (мм) 3, 7 5, 2 3, 6 4, 5 5, 4 7, 8 8, 9 2, 7 5, 9 8, 8
Т ( мм ) 2, 5 2, 7 2, 6 2, 7 3, 5 3, 4 3, 6 4, 1 4, 3 5, 6
l ( мм )                    
ω (мм) 5, 1 8, 2   8, 8 11, 2 11, 7 12, 8 13, 6 14, 7 15, 6
t (мм) 1, 8 2, 5 2, 2 2, 8 2, 5 2, 0 3, 0 3, 1 3, 2 3, 3
Мнас (А·Н/м)                    
H1 (А/м)                    
H2 (А/м)                    

 

4.3. Рассчитать значение составляющих сил, действующих на пластины датчика, используя формулы (2.1, 2.2).

4.4. Рассчитать значение изгибающего момента пластин датчика, используя формулы (2.3).

 

5. СОДЕРЖАНИЕ ОТЧЕТА

 

Отчет должен содержать:

5.1. Расчеты, выполненные в последовательности, соответствующей общему порядку выполнения работы.

5.2. Оценку данных, полученных в результате расчетов.

 

6. КОНТРОЛЬНЫЕ ВОПРОСЫ

 

6.1. Какими технологическими параметрами необходимо руководствоваться при выборе магнитострикционных датчиков.

6.2. Дайте оценку влияния значения вектора намагниченности на эффективность работы магнитострикционного датчика.

6.3. Назовите причины изменения составляющих сил действующих на пластины работающего датчика.

6.4. Объясните механизм возникновения вращающего момента на пластине работающего датчика.

6.5. Поясните влияние размеров пластины датчика на эффективность его работы.

6.6. Для чего необходимо проводить тарировку действующих усилий на пластинах датчика?

6.7. Дайте определение момента инерции магнитострикционного датчика.

 








Дата добавления: 2014-11-10; просмотров: 1049. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия