Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ. Равновесное состояние сплав может быть достигнуто при охлаждении его с бесконечно малой скоростью





 

Равновесное состояние сплав может быть достигнуто при охлаждении его с бесконечно малой скоростью. В этом случае при любой произвольно взятой температуре сосуществующих фаз содержание в них компонентов вполне определенное. Каждая фаза сплава гомогенна. Размеры и морфология фазовых выделений определяются минимальными значениями свободной энергии.

Равновесные структуры сталей и превращения в них описываются диаграммой состояния системы Fe - Fe3C (рис. 4.4). Фазовые превращения в сталях, наблюдаемые на практике, протекают при температурах, отличающихся от температур, соответствующих равновесному состоянию, и зависят от реальной скорости охлаждения. Допускается считать, что состояние, близкое к равновесному, достигается при охлаждении из аустенитного состояния вместе с отключенной печью (отжиг второго рода).

 

 

Рис. 5.1. Микроструктура технического железа:

Феррит и цементит третичный. Х 500

 

Структура технического железа при комнатной температуре, как видно из диаграммы состояния Fe - Fe3C (рис. 4.4), может быть однофазной (феррит) или двухфазной (феррит и цементит третичный). Равноосные зерна феррита при протравливании реактивом Ржешотарского имеют соломенно-желтый цвет. Светло-голубой цементит располагается по границам зерен феррита в виде тонких включений (рис. 5.1). Феррит мягкий и пластичный (sв = 200...300 МПа, sт = 120...200 МПа, d = 30...50 %, y = 60...85 %, НВ = 800...1000 МПа). Цементит твердый (НВ = 8000 МПа) и хрупкий.

Ошибка! Ошибка связи.

Рис. 5.2. Зависимость механических свойств сталей от содержания углерода

 

В структуре сталей по мере увеличения содержания углерода увеличивается массовая доля цементита и уменьшается соответственно массовая доля феррита. Это ведет к повышению твердости и прочности стали, снижению ее пластичности и вязкости (рис. 5.2), изменению физических и технологических свойств. В частности, ухудшаются свариваемость, литейные свойства, штампуемость, обрабатываемость резанием, улучшаются закаливаемость и прокаливаемость, повышается износостойкость.

В равновесной структуре доэвтектоидных сталей, состоящих из феррита (светлые зерна) и перлита (темные зерна), растет доля перлита пропорционально увеличению содержания углерода (рис. 5.3...5.5).

 

 

Рис. 5.3. Микроструктура доэвтектоидной стали с 0, 2 % С. Х 200

 

 

Рис. 5.4. Микроструктура доэвтектоидной стали с 0, 4 % С. Х 200

 

В перлите находится практически весь углерод стали (в феррите растворимость углерода при комнатной температуре не более 0, 008 %). Поэтому, если допустить, что значения плотности феррита и цементита близки друг другу, по структуре отожженной стали можно определить содержание в ней углерода. Для этого, определяется площадь поверхности шлифа стали, занятой перлитом. Например, она составляет 50 %. Тогда, зная, что в перлите содержится 0, 8 % углерода, из пропорции

 

100 % перлита - 0, 8 % С

50 % перлита - Х % С.

 

можно определить содержание в стали углерода Х = 0, 8 . 50/100 = 0, 40 % С. Затем определяется марка углеродистой стали. По ГОСТ 1050-74 сталь, содержащая 0, 4 % углерода, является качественной конструкционной углеродистой сталью марки 40.

 

Рис. 5.5. Микроструктура доэвтектоидной стали с 0, 7 % С. Х 200

 

Сталь, содержащая 0, 8 % углерода, имеет перлитную структуру и называется эвтектоидной. Перлит - эвтектоид, двухфазная структурная составляющая, представляет собой смесь феррита и цементита пластинчатого (рис. 5.6) или зернистого (рис. 5.7) строения.

Пластинчатый перлит состоит из чередующихся пластин феррита и цементита. Зародыши зерен этих фаз образуются при температуре 727 оС на границах зерен аустенита и растут одновременно по направлению от границ к центру аустенитного зерна. В результате аустенитное зерно разделяется на несколько частей с определенной, но различной относительно друг друга ориентировкой взаимнопараллельных пластин феррита и цементита. Каждая такая часть представляет собой перлитное зерно. Следовательно, в одном аустенитном зерне при эвтектоидном превращении формируется несколько зерен перлита. Перлит состоит из двух фаз - феррита и цементита с различной твердостью, полируемостью и травимостью в реактивах. При полировке и травлении шлифа на его поверхности создается рельефность. Твердые, малотравящиеся пластины цементита выступают над ферритными и остаются гладкими и блестящими. Утопающий между ними феррит оказывается затененным и, кроме того, из-за повышенной травимости, тусклым и темным. Поскольку в перлите содержится сравнительно мало (около 9 %) цементита, перлит на микрошлифе выглядит темным, но не черным, как различного рода пустоты.

 

 

Рис. 5.6. Микроструктура эвтектоидной стали с пластинчатым

перлитом. Х 200.

 

 

Рис. 5.7. Микроструктура эвтектоидной стали с зернистым перлитом. Х 200.

 

 

Рис. 5.8. Микроструктура заэвтектоидной стали с 1, 2 % С. Х 200.

 

Перлит зернистый светлый, цементит в нем имеет округлую форму. Зерна цементита расположены в ферритной матрице. Структуру зернистого перлита могут иметь после специальной термической обработки не только эвтектоидная сталь, но доэвтектоидные и заэвтектоидные стали. Поэтому определить содержание углерода в стали с зернистым перлитом нельзя. Сталь со структурой зернистого перлита имеет пониженную твердость (НВ = 1600...2200 МПа), чем со структурой пластинчатого перлита (НВ = 2000...2500 МПа), лучше обрабатывается резанием.

Стали содержащие более 0, 8 % углерода относятся к заэвтектоидным. В равновесной структуре таких сталей темные зерна перлита окружены более или менее сплошной светлой сеткой цементита вторичного (рис. 5.8). Толщина цементитной сетки увеличивается по мере увеличения содержания углерода в стали.

При определении содержания углерода по структуре заэвтектоидной стали следует под микроскопом установить площадь поверхностей шлифа, занятых перлитом и цементитом вторичным. Затем из соответствующих пропорций определить содержание углерода, находящегося в перлите и цементите вторичном. Сумма полученных результатов представляет собой содержание углерода в заэвтектоидной стали.

В значительной степени свойства углеродистых сталей зависят от содержания в них вредных примесей серы и фосфора. Сера в стали вызывает красноломкость - образование трещин при температуре горячей деформации. Фосфор вызывает хладноломкость - охрупчивание при пониженных температурах. Чем меньше этих примесей в стали, тем выше ее качество. Соответственно различают стали обыкновенного качества, качественные, высококачественные и особо высококачественные.

Стали обыкновенного качества (ГОСТ 380-71) содержат до 0, 07 % фосфора, до 0, 06 % серы, 0, 06...0, 49 % углерода, являются конструкционными, в равновесном состоянии имеют феррито-перлитную структуру. В зависимости от назначения они подразделяются на три группы: группа А - поставляемые по механическим свойствам (Ст0, Ст1, Ст2, Ст3, Ст4, Ст5 и Ст6) и предназначенные для изготовления изделий, не подвергаемых горячей обработке; группа Б - поставляемые по химическому составу (БСт0, БСт1, БСт2, БСт3, БСт4, БСт5, БСт6) - для изготовления изделий подвергаемых горячей обработке; группа В - поставляемые по механическим свойствам и химическому составу (ВСт0, ВСт1, ВСт2, ВСт3, ВСт4, ВСт5) - для изготовления сварных конструкций.

Буквы Ст в марке означают “сталь обыкновенного качества”, а цифры - условный номер стали в зависимости от нормируемых показателей. Чем больше условный номер стали, и тем больше в ней содержание углерода и тем выше ее прочность (табл. 5.1).

Таблица 5.1







Дата добавления: 2014-11-10; просмотров: 953. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия