Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Коефіцієнт регресії





У моделі регресійного аналізу характеристикою кореляційного зв’язку є теоретична лінія регресії, що описується функцією y=f(x), яка називається рівнянням регресії.

На відміну від емпіричної, теоретична лінія регресії неперервна. Рівняння регресії в такому вигляді описує числове співвідношення варіації ознак х та у в середньому. Подаючи у як функцію від х, тим самим абстрагуються від множинності причин, штучно спрощуючи механізм формування варіації у. Аналіз причинних комплексів здійснюється за допомогою множинної регресії.

Різні явища по-різному реагують на зміну факторів. Для того щоб відобразити характерні особливості зв’язку конкретних явищ, статистика використовує різні за функціональним видом регресій ні рівняння.

Залежно від характеру зв’язку використовують:

лінійні рівнянняy=а+bх коли із зміною х ознака у змінюється більш-менш рівномірно;

нелінійні рівняння, коли зміна взаємопов’язаних ознак відбувається нерівномірно (з прискоренням, уповільненням або із змінним напрямком зв’язку), зокрема: степеневеy=ахb, гіперболічнеy=а+b/х, параболічне y=а+bх+сх2 тощо.

Вибір та обґрунтування функціонального виду регресії спирається на теоретичний аналіз суті зв’язку. При цьому лише окреслюються особливості форми регресії, але не завжди є можливість визначити її функціональний вид. До того ж у конкретних умовах простору і часу межі варіації взаємопов’язаних ознак значно вужчі за теоретично можливі. Якщо кривизна регресії невелика, то в межах фактичної варіації ознак зв’язок між ними досить точно описується лінійною функцією. Цим пояснюється, що частіше застосовуються лінійні рівняння або приведені до лінійного виду. У лінійному рівнянні параметр bкоефіцієнт регресії, вказує, на скільки одиниць в середньому зміниться у із зміною х на одиницю. Він має одиницю виміру результативної ознаки. У випадку прямого зв’язку b − величина додатна, а при зворотному − від’ємна. Параметр а − вільний член рівняння регресії, тобто це значення y при x =0. Якщо х не набуває нульових значень, цей параметр має лише розрахункове призначення. Параметри визначаються методом найменших квадратів, згідно з яким сума квадратів відхилень емпіричних значень у від теоретичних мінімальна: . Відповідно до умови мінімізації параметри обчислюються на основі системи нормальних рівнянь:

,

.

Звідси

.

Коефіцієнт регресії у невеликих за обсягом сукупностях схильний до випадкових коливань. Тому здійснюється перевірка його істотності за допомогою t − критерію (Ст’юдента), статистична характеристика якого для гіпотези Н0: b =0 визначається таким чином: , де b − коефіцієнт регресії, mb − власне стандартна похибка, що розраховується за формулою

;

де − відповідно залишкова та факторна дисперсії; n − обсяг сукупності.

Для коефіцієнта регресії визначаються довірчі межі b ± b.

Характеристикою відносної зміни у за рахунок х є коефіцієнт еластичності , який показує, на скільки процентів у середньому змінюється результативна ознака зі зміною факторної на 1%.

На підставі рівняння регресії визначаються теоретичні значення , тобто значення результативної ознаки за умови впливу лише фактора х при незмінному рівні інших факторів.







Дата добавления: 2014-11-10; просмотров: 820. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия