Рангова кореляція Спірмена та Кендала
В деяких випадках ми можемо зіткнутися з такими якостями, які не піддаються вираженню числом одиниць. Ці обставини заставляють застосовувати “не параметричні методи”, які дають змогу вимірювати інтенсивність зв’язків між кількісними ознаками, форма розподілу яких відрізняється від нормального і між якісними ознаками. В основу не параметричних методів покладено принцип нумерації варіант ряду. Взаємозв’язок між ознаками, які можна зранжувати, передусім на основі бальних оцінок, вимірюється методами рангової кореляції. Кожній одиниці сукупності присвоюється порядковий номер в ряді, який буде впорядковано за рівнем ознаки. Таким чином, ряд значень ознаки впорядковується, а номер кожного окремого значення називатиметься її рангом. Ранжування проводиться за кожною ознакою окремо: перший ранг надається найменшому значенню ознаки, останній — найбільшому або навпаки. Кількість рангів дорівнює обсягу сукупності. Очевидно, зі збільшенням обсягу сукупності ступінь „розпізнаваності” елементів зменшується. З огляду на те, що рангова кореляція не потребує додержання будь-яких математичних передумов щодо розподілу ознак, зокрема вимоги нормальності розподілу, рангові оцінки щільності зв’язку доцільно використовувати для сукупностей невеликого обсягу. Ранги, надані елементам сукупності за ознаками х і у, позначають відповідно Rx та Ry. Залежно від ступеня зв’язку між ознаками певним чином співвідносяться й ранги. При прямому функціональному зв’язку Rx = Ry тобто відхилення між рангами d = Rx − Ry = 0, отже, і сума квадратів відхилень . При зворотному функціональному зв’язку , де п —число рангів. Якщо зв’язок між ознаками відсутній, являє собою середню арифметичну цих крайніх значень: Обчислення коефіцієнта кореляції Спірмена ґрунтується на вивченні різниці рангів значень факторної та результативної ознаки: , де di − відхилення рангів факторної та результативної ознак (різниця), n — кількість рангів. і одночасно оцінює щільність зв’язку та його напрямок. Кендал запропонував так знаходити коефіцієнт кореляції: , де S – сума балів при умові, що балом +1 оцінюється пара рангів, які мають за обома ознаками однаковий порядок, а балом –1 – пара рангів з оберненим порядком. Алгоритм обчислення коефіцієнта рангової кореляції Кендала: 1) впорядковуємо ряд значень ознаки х за зростанням і вказуємо ранги ознаки у відповідно; 2) обчислюємо бали для всіх рангів за ознакою у. Для цього визначаємо, скільки рангів, які знаходяться перед та після даного, перевищують його. Перше число записуємо зі знаком “− ”, друге – зі знаком “+”. 3) знаходимо суму балів за всіма рангами; 4) обчислюємо значення коефіцієнта . Зауваження: якщо значення ознаки у однакові, то однаковими повинні бути і їх ранги. Для цього з рангів, які б мали бути присвоєнні різним значенням, знаходять середній і присвоюють кожному з рівних значень. Наприклад (таб. 7.4.1): Таблиця 7.4.1
При достатній кількості спостережень
|