Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Способи поширення вибіркових даних на генеральну сукупність





Кінцевою метою будь-якого вибіркового спостереження є поширення його характеристик на генеральну сукупність. Розрізняють два способи поширення даних вибіркового спостереження: прямий перерахунок та метод коефіцієнтів.

1. Прямий перерахунок використовують у тому випадку, коли треба визначити обсяг ознаки у генеральній сукупності. Робиться це так: середній розмір ознаки, обчислений в результаті вибіркового спостереження, треба помножити на чисельність одиниць генеральної сукупності.

2. Якщо вибіркове спостереження проводять з метою уточнення результатів суцільного спостереження, застосовують метод коефіцієнтів.

Припустимо, що суцільний перепис показав, що об’єм ознаки m. Під час контрольної перевірки 10% елементів сукупності було встановлено, якщо при суцільному спостереженні обсяг ознаки становив m, то при контрольному – . Таким чином не враховано ознаки, якщо , або враховано лишніх ознаки, якщо . Числа або є поправочними коефіцієнтами.

Відбір вважається задовільним, якщо . Якщо , вибірка вважається не репрезентативною і відбір повторюється або ж збільшується чисельність вибірки.

 

6.7. Статистична перевірка гіпотез

Статистична гіпотеза це певне припущення щодо властивостей генеральної сукупності, яке можна перевірити спираю­чись на результати вибіркового спостереження. Суть перевірки гіпотез полягає в тому, щоб визначити, узгоджуються чи ні результати вибірки з гіпотезою, випадковими чи невипадковими є розбіжності між гіпотезою і даними вибірки. Найчастіше гіпотеза, яку належить перевірити, формулюється як відсутність розбіжності (нульова розбіжність) між невідомим параметром генеральної сукупності G і заданою величиною А, а тому її позначають H0. Зміст гіпотези записують після двокрапки, наприклад Н0: G = А.

Кожній нульовій гіпотезі протиставляють альтернативну На. При формулюванні На враховується вагомість відхилень (G - А): для додатних відхилень На: G > А, для від’ємних — На: G < А, для тих і інших - На: G ≠ А.

Якщо вибіркові дані суперечать гіпотезі H0, вона відхиляється, коли ці дані узгоджуються з гіпотезою H0, вона не відхиляється. Спираючись на результати вибірки, статистична перевірка гіпотез неминуче пов’язана з ризиком прийняття помилкового рі­шення: ризик І — відхилення правильної нульової гіпотези, ризик II — невідхилення нульової гіпотези, коли насправді пра­вильною є альтернативна. Ці ризики конкуруючі, і зменшення імовірності α одного зумовлює збільшення ймовірності β іншо­го. Оскільки уникнути ризиків неможливо, а наслідки їх, як правило, різновагомі, то в кожному конкретному дослідженні праг­нуть мінімізувати той ризик, який пов’язаний з більшими втратами. Ймовірності ризиків наведено в табл.6.7.1.

Таблиця 6.7.1.

Правильна гіпотеза Прийнята гіпотеза
H0 Hа
H0 1- α α
Hа Β 1- β

 

Правило, за яким гіпотеза H0 відхиляється або не відхиляється (приймається), називається статистичним критерієм. Матема­тичною основою будь-якого критерію є статистична характерис­тика Z, значення якої визначається за даними вибірки, а закон розподілу відомий. Кожне значення характеристики Z має певну ймовірність Р (Z). Якщо вибіркове значення Z малоймовірне, гі­потеза H0 відхиляється.

Межу малоймовірності Z називають рівнем істотності α. Очевидно, що α — це ймовірність ризику І, а тому залежно від змісту гіпотези H0 і наслідків її відхилення рівень істотності ви­значають у кожному конкретному дослідженні. Зазвичай виби­рають один із рівнів α, для яких табульовані значення статистич­них характеристик критеріїв. Це α = 0, 10; 0, 05; 0, 025; 0, 01.

Значення статистичної характеристики критерію Z1-α поділяє множину вибіркових значень Z на дві частини: а) область допус­тимих значень і б) критичну область. Якщо вибіркове значення Z потрапляє у критичну область, гіпотеза H0 відхиляється, якщо в область допустимих значень — не відхиляється. Саме тому зна­чення Z1-α називають критичним.

Залежно від того, як сформульована альтернативна гіпотеза, критична область може бути односторонньою (ліво- чи правосторонньою) або двосторонньою (рис. 6.7.1).

 

 
 
 
 

 
 

 
 

 
 


Рис. 6.7.1. Лівостороння та двосторонньою критичні області

 

Статистична гіпотеза перевіряється в такій послідовності:

а) формулюють нульову H0 та альтернативну На гіпотези;

б) вибирають статистичну характеристику Z, за значеннями якої перевіряють правильність гіпотези H0;

в) визначають рівень істотності α і відповідне йому критичне значення Z1-α ; залежно від формулювання гіпотез H0 і На критична область може бути одно- або двосторонньою;

г) за результатами вибірки розраховують фактичне (вибірко­ве) значення статистичної характеристики Z, яке порівнюють з критичним Z1-α ; якщо Z > Z1-α , гіпотеза H0 відхиляється, при Z < Z1-α - не відхиляється.

 

7. Методи аналізу взаємозв’язків

 

7.1.Поняття про кореляційний аналіз

Усі явища навколишнього світу, соціально-економічні зокрема, взаємозв’язані й взаємозумовлені. У складному переплетенні, всеохоплюючого взаємозв’язку будь-яке явище є наслідком дії певної множини причин і водночас − причиною інших явищ. Причини та наслідки пов’язані неперервними ланцюгами прямо або опосередковано.

Поряд із причинними існують зв’язки паралельних явищ, на які впливає спільна причина.

Визначальна мета вимірювання взаємозв’язків − виявити і дати кількісну характеристику причинних зв’язків. Суть причинного зв’язку полягає в тому, що за певних умов одне явище спричи­нює інше. Причина сама по собі не визначає наслідку, останній залежить також від умов, в яких діє причина. Вивчаючи закономірності зв’язку, причини та умови об’єднують в одне поняття „фак­тор”. Відповідно ознаки, що характеризують причини та умови зв’язку, називаються факторними x, а ті, що характеризують наслідки зв’язку, - результативними у. Між ознаками х та у виникають різні за природою та характером зв’язки, зокрема: функціональні та стохастичні. При функціональному зв’язку кожному значенню ознаки х відповідає одне чітко визначене значення у. Цей зв’язок виявляється однозначно у кожному окремому випадку. На відміну від функціональних, стохастичні зв’язки неоднозначні. При стохастичному зв’язку кожному значенню ознаки х відповідає певна множина значень у, які утворюють так званий умовний розподіл. Як закон цей зв’язок проявляється лише у масі випадків і характеризується зміною умовних розподілів у. Якщо замінити умовний розподіл середньою величиною , то утвориться різновид стохастичного зв’язку − кореляційний. У випадку кореляційного зв’язку кожному значенню ознаки х відповідає середнє значення результативної ознаки . Прикладом стохастичного та зокрема кореляційного зв’язку є розподіл проданих на біржі нерухомості однокімнатних квартир за їх вартістю у та розміром загальної площі х (табл. 7.1.1)

Таблиця 7.1.1

 

Розмір загальної площі, м2 , x Кількість квартир з вартістю, тис. ум. гр. од. Середня вартість квартири, тис. ум. гр. од.
9-11 11-13 13-15 15-17 17-19 Разом
До 25     - - -   10, 8
25—30         -   13, 2
30—35 -           15, 2
35 і більше - - - -     18, 0
В цілому             13, 0

 

Кожній групі за факторною ознакою відповідає свій розподіл у, який відрізняється від інших груп та від безумовного підсумкового розподілу. Отже, спостерігається стохастичний зв’язок між ознаками.

Умовні розподіли можна замінити середніми значеннями результативної ознаки, які обчислюються як середня арифметична зважена:

.

Поступова зміна середніх від однієї групи до іншої свідчить про наявність кореляційного зв’язку між ознаками.

Характеристикою кореляційного зв’язку є лінія регресії, яка розглядається у двох моделях: аналітичного групування та регресійного аналізу. У моделі аналітичного групування - це емпірична лінія регресії, що утворюється з групових середніх значень результативної ознаки для кожного значення (інтервалу) xj.

Ефекти впливу х на у визначаються як відношення приростів середніх групових значень , де , .

Оцінка щільності зв’язку ґрунтується на правилі складання дисперсій. У моделі аналітичного групування мірою щільності зв’язку є відношення міжгрупової дисперсії до загальної, яке називають кореляційним відношенням:

,

де — загальна дисперсія, яка вимірює варіацію результативної ознаки y, зумовлену впливом всіх можливих факторів, міжгрупова дисперсія − вимірює варіацію результативної ознаки у за рахунок впливу тільки групувальної ознаки х. Кореляційне відношення коливається від 0 до 1, а якщо подається у процентах, то від 0 до 100%. За відсутнього зв’язку , а за умови функціонального − . Чим більше наближається до одиниці, тим щільніший зв’язок.

Проте щільний зв’язок може виникнути випадково, тому необхідно перевірити його істотність, тобто довести невипадковість зв’язку. Перевірка істотності зв’язку – це порівняння фактичного значення h 2 з його критичним значенням для певного рівня істотності α та числа ступенів свободи k1 = m -1 та k2 = n - m, де m — число груп; n — обсяг сукупності. Якщо h2 > , то зв’язок визнається істотним. Критичні значення кореляційного відношення для α =0, 05 наведені у таблицях.

 







Дата добавления: 2014-11-10; просмотров: 1651. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия