Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Лабораторная работа №19





Тема: «Решение задач, реализуемых с помощью алгоритмов с возвращением».

Цель работы: получение навыков составления программ на языке Pascal с использованием рекурсии.

 

Задача на вычисление факториала натурального числа.

Для того, чтобы вычислить N!, надо значение (N-1)! умножить на N, при этом 1! =1. В общем виде это можно записать так:

Решение:

Для вычисления факториала опишем функцию:

function factorial (n: integer): Longint;

begin

if n=1

then factorial: =1

else factorial: =n*factorial (n-1)

end

end;

Рассмотрим последовательность вызовов этой функции для n=5.

ü Первый вызов функции происходит в основной программе. Отметим, что при каждом обращении к функции будет создаваться свой набор локальных переменных (в данном случае в функции факториал имеется всего одна локальная переменная n). Для каждой локальной переменной на время работы функции выделяется память. После завершения работы функции эта память освобождается и переменные удаляются.

Так как , то управление передается на ветку Else и функции factorial присваивается значение n*factorial (n-1), то есть 5*factorial (4).

Происходит второй вызов функции factorial, с параметром 4. Этот процесс повторяется до тех пор, пока значение параметра не станет равным 1. Тогда n=1, а поэтому значение функции factorial=1.

Таким образом n=1 – это условие окончания рекурсии.

Управление передается в точку вызова, то есть в предыдущую функцию для n=2: factorial: =n* factorial (n-1), значит factorial: =2*1, следовательно, factorial (2)=2. Возвращаемся назад, поднимаясь «вверх» по цепочке рекурсивных вызовов. Таким образом, получаем значение factorial (5)=120, (рис. 17).

 

 

function factorial (n: integer): Longint; begin if n=1 then factorial: =1 else factorial: =n* factorial (n-1) end;
1 вызов (n=5) 120

 

 


function factorial (n: integer): Longint; begin if n=1 then factorial: =1 else factorial: =n* factorial (n-1) end;
2 вызов (n-4)

 

 
 

 


function factorial (n: integer): Longint; begin if n=1 then factorial: =1 else factorial: =n* factorial (n-1) end;
3 вызов (n=3)

 

 
 

 


function factorial (n: integer): Longint; begin if n=1 then factorial: =1 else factorial: =n* factorial (n-1) end;
4 вызов (n=2)

 

 
 

 


function factorial (n: integer): Longint; begin if n=1 then factorial: =1 else factorial: =n* factorial (n-1) end;
5 вызов (n=1)

 

Рис. 17

 

Задача о «Ханойских башнях».

В большом храме Бенареса бронзовая плита поддерживает 3 алмазных стержня, на один из которых Бог нанизал во время сотворения мира 64 золотых диска, образующих пирамиду. С тех пор монахи каждую секунду перекладывают по одному диску согласно правилам:

o За один раз можно перекладывать только один диск;

o Нельзя класть диск на диск, меньший по размеру;

o Можно пользоваться только одним резервным стержнем.

Составить программу с использованием рекурсии.

Решение:

1.

 

 

           
     

 


1 шаг 3 шаг

           
   
     
 
 
 

 


Х У Z

 

2 шаг

 

 

2. Перенесем верхушку пирамиды, состоящую из (n-1)-го диска, с первого стержня на второй, затем перенесем один диск с первого стержня на третий, а потом перенесем верхушку пирамиды, состоящую из (n-1)-го диска, со второго стержня на третий.

3. Далее повторим алгоритм переноса, но уже для (n-1)-го диска, затем для (n-2)-го диска и так далее, пока не опустимся до одного диска.







Дата добавления: 2014-11-10; просмотров: 705. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия