Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

И их составляющие





Системы одновременных уравнений могут быть представлены в структурной и приведенной формах.

Основными составляющими обеих форм записи являются эндогенные и экзогенные переменные. Эндогенные переменные (y) определяются внутри модели и являются зависимыми переменными. Экзогенные переменные (x) определяются вне системы и являются независимыми переменными. Предполагается, что экзогенные переменные не коррелируют с ошибкой регрессии в соответствующем уравнении.

Простейшая структурная форма модели имеет вид:

.

Классификация переменных на эндогенные и экзогенные зависит от теоретической концепции принятой модели. Экономические переменные могут выступать в одних моделях как эндогенные, в других как экзогенные переменные. Внеэкономические переменные, например климатические условия, входят в систему как экзогенные переменные. В качестве экзогенных могут рассматриваться значения эндогенных переменных за предшествующий период времени (лаговые переменные). Так, потребление текущего года может зависеть не только от ряда экономических факторов, но и от уровня потребления в предыдущем году. Целесообразно в качестве экзогенных переменных выбирать те, которые могут быть объектом регулирования.

Структурная форма модели в правой части содержит:

Ø коэффициенты при эндогенной переменной – ;

Ø коэффициенты при экзогенной переменной – ;

Ø переменные модели выражены в отклонениях от среднего уровня, т.е. под x подразумевается , а под y – соответственно . Поэтому свободный член в каждом уравнении отсутствует.

Использование МНК для оценивания коэффициентов структурной модели дает, как принято считать в теории, смещенные и несостоятельные оценки. Поэтому обычно для определения структурных коэффициентов структурная форма модели преобразуется в приведенную.

Приведенная форма модели представляет собой систему линейных функций эндогенных переменных от экзогенных. Для простейшей структурной модели соответствующая приведенная модель имеет вид:

.

Ее можно получить, выразив из первого уравнения структурной модели

.

Выполнив подстановку во второе уравнение, после необходимых преобразований получим

.

Аналогично, выразив из второго уравнения и произведя подстановку в первое, получим

.

Применяя МНК, можно оценить , а затем найти значения эндогенных переменных через экзогенные.

Эконометрические модели обычно включают в систему не только уравнения, но и тождества. Они устанавливают соотношения между эндогенными переменными, но не содержат случайных составляющих. Например, Т. Хаавелмо в 1947 г., исследуя линейную зависимость потребления (с) от дохода (y), предложил одновременно учитывать и тождество дохода. В этом случае модель имеет вид:

,

где a и b –параметры линейной зависимости с от y; x – инвестиции в основной капитал и запасы экспорта и импорта. Оценки параметров должны учитывать тождество дохода в отличие от параметров обычной линейной регрессии.

 







Дата добавления: 2014-11-10; просмотров: 521. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия