Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Игра двух лиц с нулевой суммой. Bi Ai B1 B2 B3 … Bn A1 α11 α12 α13 … α1n A2 α21





Методы теории игр наиболее развиты для конечной одноходовой игры двух лиц с нулевой суммой (т.е. сумма выигрышей игроков равна 0). Такие игры еще называют антагонистическими.

Пусть и – участники игры. Саму игру опишем с помощью так называемой платежной матрицы (матрицы игры) порядка . Строки этой матрицы – это чистые стратегии игрока , а столбцы – чистые стратегии игрока .

Предполагается, что каждому игроку известны все элементы платежной матрицы.

Элемент определяет результат игры, а именно выигрыш игрока при выборе игроками и стратегий и соответственно.

В этом случае достаточно исследовать только платежную матрицу игрока .

В данной игре игрок стремится выбрать такую строку матрицы, чтобы максимизировать свой выигрыш, а игрок - такой столбец матрицы, чтобы минимизировать свой проигрыш.

 

Bi   Ai B1 B2 B3 Bn
A1 α 11 α 12 α 13 α 1n
A2 α 21 α 12 α 13 α 2n
Am α m1 α m2 α m3 α mn

Задачей теории игр является нахождение решения игры, т.е. определение для каждого игрока его оптимальной стратегии и цены игры.

Оптимальной называется стратегия, которая при многократном повторении игры обеспечивает данному игроку максимально возможный средний выигрыш (или максимально возможный средний проигрыш) независимо от поведения противника.

Ценой игры называется выигрыш (проигрыш), соответствующий оптимальным стратегиям игроков.

В теории игр наилучшим принято считать поведение игроков, при котором каждый игрок предполагает, что его противник не глупее (принцип разумности).

Если игрок А выбрал стратегию i, то его выигрыш составит

Отсюда максимальный гарантированный выигрыш

.

Стратегия, соответствующая называется максиминной стратегией, а - нижней ценой игры или максимином.

Игрок В, рассуждая аналогично может среди всех своих стратегий выбрать ту, которая обеспечит ему минимальный гарантированный проигрыш.

Стратегия, соответствующая называется минимаксной стратегией, а величина - верхней ценой игры или минимаксом.

Если игрок А будет придерживаться максимаксной стратегии, то он получает выигрыш не меньше максиминного значения, т.е.

Если игрок В придерживается минимаксной стратегии, то его проигрыш будет не больше минимального значения, т.е.

В общем случае отношения между нижней и верхней ценой игры устанавливаются неравенством

Существуют игры, для которых . Элемент платежной матрицы, отвечающей этим стратегиям называется седловой точкой. Ей отвечает цена игры :

Если , то игра выгодна игроку А.

При игра выгодна игроку В.

Если , то игра выгодна обоим игрокам и называется безобидной или справедливой.

 







Дата добавления: 2014-11-10; просмотров: 714. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия