Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Распишем алгоритм по шагам





Положим:

· Х – исходное состояние;

· У – промежуточное состояние;

· Z – конечное состояние. (см. рис. выше)

1 шаг – перенести (n-1) диск со стержня Х на стержень У, используя стержень Z как вспомогательный;

2 шаг – перенести один нижний диск со стержня Х на стержень Z;

3 шаг – перенести (n-1) диск со стержня У на стержень Z, используя свободный стержень Х.

 

4. Таким образом имеем рекурсивный вызов процедуры:

Procedure Hanoi (n: word; x, y, z: char);

begin

if n=1

then writeln (‘Переложить’, x, ‘на’, z)

else

begin

hanoi (n-1, x, z, y); {1 шаг}

writeln (‘Переложить’, x, ‘на’, z); {2 шаг}

hanoi (n-1, x, z, y); {3 шаг}

end

end; {hanoi}

Задача на вычисление факториала натурального числа.

Для того, чтобы вычислить N!, надо значение (N-1)! умножить на N, при этом 1! =1. В общем виде это можно записать так:

Решение:

Для вычисления факториала опишем функцию:

function factorial (n: integer): Longint;

begin

if n=1

then factorial: =1

else factorial: =n*factorial (n-1)

end

end;

рассмотрим последовательность вызовов этой функции для n=5.

ü Первый вызов функции происходит в основной программе. Отметим, что при каждом обращении к функции будет создаваться свой набор локальных переменных (в данном случае в функции факториал имеется всего одна локальная переменная n). Для каждой локальной переменной на время работы функции выделяется память. После завершения работы функции эта память освобождается и переменные удаляются.

Так как , то управление передается на ветку Else и функции factorial присваивается значение n*factorial (n-1), то есть 5*factorial (4).

Происходит второй вызов функции factorial, с параметром 4. Этот процесс повторяется до тех пор, пока значение параметра не станет равным 1. Тогда n=1, а поэтому значение функции factorial=1.

Таким образом n=1 – это условие окончания рекурсии.

Управление передается в точку вызова, то есть в предыдущую функцию для n=2: factorial: =n* factorial (n-1), значит factorial: =2*1, следовательно, factorial (2)=2. Возвращаемся назад, поднимаясь «вверх» по цепочке рекурсивных вызовов. Таким образом, получаем значение factorial (5)=120.

 

function factorial (n: integer): Longint; begin if n=1 then factorial: =1 else factorial: =n* factorial (n-1) end;
1 вызов (n=5) 120

 

 


function factorial (n: integer): Longint; begin if n=1 then factorial: =1 else factorial: =n* factorial (n-1) end;
2 вызов (n-4)

 

 
 

 


function factorial (n: integer): Longint; begin if n=1 then factorial: =1 else factorial: =n* factorial (n-1) end;
3 вызов (n=3)

 

 
 

 


function factorial (n: integer): Longint; begin if n=1 then factorial: =1 else factorial: =n* factorial (n-1) end;
4 вызов (n=2)

 

 
 

 


function factorial (n: integer): Longint; begin if n=1 then factorial: =1 else factorial: =n* factorial (n-1) end;
5 вызов (n=1)

 

 







Дата добавления: 2014-11-10; просмотров: 684. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия