Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Сетевая модель и ее элементы





ПРАКТИЧЕСКОЕ ЗАНЯТИЕ 1

МОДЕЛИРОВАНИЕ ЛОГИСТИЧЕСКИХ ПРОЦЕССОВ С ПРИМЕНЕНИЕМ СЕТЕВОГО ПЛАНИРОВАНИЯ И УПРАВЛЕНИЯ

Цель практического занятия: усвоение, систематизация и закрепление пройденного материала по данной теме.

Ознакомившись с данной темой, студенты будут:

  1. Иметь представление о сетевом моделировании логистических процессов предприятия.
  2. Иметь навыки решения задач с применением сетевого планирования и управления производственным процессом
 

Теоретическая часть

Сетевой моделью (другие названия: сетевой график, сеть) называется экономико-компьютерная модель, отражающая комплекс работ (операций) и событий, связанных с реализацией некоторого проекта (научно-исследовательского, производственного и др.), в их логической и технологической последовательности и связи. Анализ сетевой модели, представленной в графической или табличной (матричной) форме, позволяет:
во-первых, более четко выявить взаимосвязи этапов реализации проекта;
во-вторых, определить наиболее оптимальный порядок выполнения этих этапов в целях, например, сокращения сроков выполнения всего комплекса работ.

Сетевая модель и ее элементы

Математический аппарат сетевых моделей базируется на теории графов.
Графом называется совокупность двух конечных множеств: множества точек, которые называются вершинами, и множества связей, соединяющих вершины, которые называются ребрами. Если рассматриваемые пары вершин являются упорядоченными, т.е. на каждом ребре задается направление, то граф называется ориентированным; в противном случае — неориентированным. Последовательность неповторяющихся ребер, ведущая от некоторой вершины к другой, образует путь.

Граф называется связным, если для любых двух его вершин существует путь, их соединяющий; в противном случае граф называется несвязным.
В экономике чаще всего используются два вида графов: дерево и сеть.

Дерево представляет собой связный граф без циклов, имеющий исходную вершину (корень) и крайние вершины; пути от исходной вершины к крайним вершинам называются ветвями.

Сеть — это ориентированный конечный связный граф, имеющий начальную вершину (источник) и конечную вершину (сток). Таким образом, сетевая модель представляет собой граф вида «сеть».

В экономических исследованиях сетевые модели возникают при моделировании экономических процессов методами сетевого планирования и управления (СПУ).
Объектом управления в системах сетевого планирования и управления являются коллективы исполнителей, располагающих определенными ресурсами и выполняющих определенный комплекс операций, который призван обеспечить достижение намеченной цели, например, разработку нового изделия, строительства объекта и т. п.

Основой сетевого планирования и управления является сетевая модель (СМ), в которой моделируется совокупность взаимосвязанных работ и событий, отображающих процесс достижения определенной цели. Она может быть представлена в виде графика или таблицы.

Основные понятия сетевой модели:

1. событие,

2. работа,

3. путь.

На рисунке 1 графически представлена сетевая модель, состоящая из 11 событий и 16 работ, продолжительность выполнения которых указана над работами.



Рисунок 1 – Сетевая модель


Работа характеризует материальное действие, требующее использования ресурсов, или логическое, требующее лишь взаимосвязи событий. При графическом представлении работа изображается стрелкой, которая соединяет два события. Она обозначается парой заключенных в скобки чисел (i, j), где i — номер события, из которого работа выходит, а j — номер события, в которое она входит. Работа не может начаться раньше, чем свершится событие, из которого она выходит. Каждая работа имеет определенную продолжительность t (i, j). Например, запись t (2-5) = 4 означает, что работа (2-5) имеет продолжительность 5 единиц времени. К работам относятся также такие процессы, которые не требуют ни ресурсов, ни времени выполнения. Они заключаются в установлении логической взаимосвязи работ и показывают, что одна из них непосредственно зависит от другой; такие работы называются фиктивными и на графике изображаются пунктирными стрелками (работа (6-9)).


Событиями называются результаты выполнения одной или нескольких работ. Они не имеют протяженности во времени. Событие свершается в тот момент, когда оканчивается последняя из работ, входящая в него. События обозначаются одним числом и при графическом представлении сетевая модель изображаются кружком (или иной геометрической фигурой), внутри которого проставляется его порядковый номер (i = 1, 2,..., n).

В сетевой модели имеется начальное событие (с номером 1), из которого работы только выходят, и конечное событие (с номером N), в которое работы только входят.

Путь – это цепочка следующих друг за другом работ, соединяющих начальную и конечную вершины, например, в приведенной выше модели путями являются L 1 = (1, 2, 3, 7, 10, 11), L 2 = (1, 2, 4, 6, 11) и др.


Продолжительность пути определяется суммой продолжительностей составляющих его работ. Путь, имеющий максимальную длину, называют критическим и обозначают L Kp, а его продолжительность — t кр. Работы, принадлежащие критическому пути, называются критическими. Их несвоевременное выполнение ведет к срыву сроков всего комплекса работ.
Cетевая модель имеют ряд характеристик, которые позволяют определить степень напряженности выполнения отдельных работ, а также всего их комплекса и принять решение о перераспределении ресурсов.

Перед расчетом СМ следует убедиться, что она удовлетворяет следующим основным требованиям:
1. События правильно пронумерованы, т. е. для каждой работы (i, j) i < j (рисунок 2, работы (4-3) и (3-2)). При невыполнении этого требования необходимо использовать алгоритм пере нумерации событий, который заключается в следующем:
- нумерация событий начинается с исходного события, которому присваивается № 1;
- из исходного события вычеркивают все исходящие из него работы (стрелки), и на оставшейся сети находят событие, в которое не входит ни одна работа, ему и присваивают № 2;

- затем вычеркивают работы, выходящие из события № 2, и вновь находят событие, в которое не входит ни одна работа, и ему присваивают № 3, и так продолжается до завершающего события, номер которого должен быть равен количеству событий в сетевом графике;

- если при очередном вычеркивании работ одновременно несколько событий не имеют входящих в них работ, то их нумеруют очередными номерами в произвольном порядке.

2. Отсутствуют тупиковые события (кроме завершающего), т. е. такие, за которыми не следует хотя бы одна работа (рисунка 2, событие 5);

3. Отсутствуют события (за исключением исходного), которым не предшествует хотя бы одна работа (событие 7);

4. Отсутствуют циклы, т. е. замкнутые пути, соединяющие событие с ним же самим (путь (2, 4, 3)).



Рисунок 2 – Основные ошибки в построении сетевой модели


При невыполнении указанных требований бессмысленно приступать к вычислениям характеристик событий, работ и критического пути.







Дата добавления: 2014-11-10; просмотров: 740. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия