Студопедия — Основные теоретические сведения. В настоящее время широко распространены различные типы фотоэлектрических приборов, одним из которых является фоторезистор - непроволочный полупроводниковый
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Основные теоретические сведения. В настоящее время широко распространены различные типы фотоэлектрических приборов, одним из которых является фоторезистор - непроволочный полупроводниковый






В настоящее время широко распространены различные типы фотоэлектрических приборов, одним из которых является фоторезистор - непроволочный полупроводниковый прибор, электрическое сопротивление которого изменяется под действием оптического излучения. К оптическому диапазону излучения относят ультрафиолетовое, видимое и инфракрасное излучения с длиной волны от десятков нанометров до десятых долей миллиметра.

Работа фоторезисторов основана на явлении внутреннего фотоэффекта (фотопроводимости) в полупроводниках.

Под внутренним фотоэффектом понимают переход электронов в полупроводнике из связанных состояний (из валентной зоны) в свободные (в зону проводимости) под действием оптического излучения. Результатом внутреннего фотоэффекта является возрастание концентрации в полупроводниках свободных носителей заряда (электронов) и, как следствие, уменьшение активного сопротивления.

Внутренний фотоэффект происходит при частоте, превышающей или равной значению, которую называют " красной границей" внутреннего фотоэффекта:

(1)

где - энергия электромагнитного излучения, необходимая для перехода электрона из связанного состояния в свободное;

- постоянная Планка.

По своему устройству и технике применения фоторезисторы являются простейшими из фотоэлектрических приборов и в зависимости от типа и назначения имеют самые разнообразные конструктивные решения. На рис. 1 схематически показано устройство фоторезистора. Пластина или пленка фоточувствительного полупроводникового материала 2 закреплена на подложке 1 из непроводящего материала - стекла, керамики или кварца. В зависимости от применяемого слоя полупроводникового материала фоторезисторы подразделяются на сернистосвинцовые, сернистокадмиевые, сернисто-висмутовые и поликристаллические селено - кадмиевые. В качестве электродов 3 используют металлы, не подвергающиеся коррозии (серебро, золото, платина). Для защиты от внешних воздействий поверхность фоточувствительного элемента 2 фоторезистора покрывают слоем прозрачного лака 4. Фоторезистор включается в цепь последовательно с управляемым устройством (Rн) и источником электроэнергии (рис. 2).

К достоинствам фоторезисторов можно отнести: высокую чувствительность; небольшие габариты; возможность работы в цепях постоянного и переменного токов и в инфракрасной области спектра излучения. В ряде случаев ток, протекающий через фоторезистор можно использовать непосредственно без применения промежуточного усиления для приведения в действие исполнительного механизма. Это является существенным преимуществом фоторезистора перед другими типами фотоэлектрических приборов.

Однако, при освещении фоторезистора ток в нем достигает своего конечного значения лишь спустя некоторый промежуток времени, а при затемнении фоторезистора он уменьшается с некоторым запозданием - фоторезисторы обладают заметной инерционностью, поэтому для регистрации кратковременных световых импульсов они не годятся.

К основным параметрам фоторезисторов относятся: темновое сопротивление, темновой ток, световой ток, фототок, интегральная чувствительность, рабочее напряжение, и т.д.

Темновое сопротивлением RТ - сопротивление фоторезистора, который не освещен. В этих условиях в цепи с фоторезистором под действием напряжения U источника электроэнергии создается небольшой темновой ток:

(2)

Этот ток обусловлен наличием в неосвещенном полупроводнике некоторого количества свободных носителей заряда.

При освещении фоторезистора сопротивление его уменьшается, и в цепи протекает ток, называемый световым:

(3)

Этот ток значительно больше темнового тока. Его возрастание происходит за счет увеличения концентрации свободных носителей заряда в полупроводниковой пленке 2 (рис 1) вследствие внутреннего фотоэффекта.

Разность между световым и темновым токами называется фототоком:

(4)

Интегральная чувствительность определяется при воздействии на фоторезистор немонохроматического излучения.

Величина фототока, приходящаяся на единицу светового потока, называется интегральной чувствительностью (К) фоторезистора:

. (5)

Для измерения интегральной чувствительности фоторезистора принято использовать лампу накаливания с вольфрамовой нитью при температуре 2850 К. Обычно интегральная чувствительность фоторезисторов колеблется от 50 до 1200 мА/лм.

Рабочее напряжение - это максимально возможное напряжение, не приводящее к изменению других параметров фоторезистора в течение всего срока службы. Оно может быть в пределах от нескольких единиц вольт до 100 В.

Значения параметров фоторезисторов, как и любых полупроводниковых приборов, существенно зависят от температуры.

Для выбора типа и режима работы фоторезистора используют ряд его характеристик.

Вольт-амперная характеристика - показывает зависимость фототока от приложенного напряжения U при постоянном световом потоке ( при Ф=Const). Вольт-амперные характеристики большинства фоторезисторов линейны (рис. 3). Однако, в некоторых случаях при повышении напряжения линейность нарушается.

Световая характеристика - это зависимость фототока от светового потока (Ф) постоянного спектрального состава ( при U=Const) (рис.4). При малых значениях светового потока характеристику можно считать линейной, а при больших прямо пропорциональная зависимость нарушается.

Когда световой поток мал, первичный фототок проводимости практически безынерционен и изменяется прямо пропорционально величине светового потока, падающего на фоторезистор. По мере возрастания величины светового потока увеличивается число электронов проводимости. Двигаясь внутри полупроводника, электроны сталкиваются с атомами, ионизируют их и создают дополнительный поток электрических зарядов, получивший название вторичного фототока проводимости. Увеличение числа ионизированных атомов тормозит движение электронов проводимости. В результате этого изменения фототока запаздывают во времени относительно изменений светового потока, что определяет некоторую инерционность фоторезистора и нелинейность световой характеристики.

Спектральная характеристика - это зависимость чувствительности фоторезистора от длины волны светового излучения. Фототок зависит от спектрального состава светового потока. Зависимость относительного значения фототока от длины волны излучения при постоянном световом потоке определяет спектральную характеристику фоторезисторов ( при Ф=Const), которая зависит от их материала. Путем соответствующего подбора последнего можно построить фоторезистор, чувствительный к любой части видимого спектра. Некоторые из фоторезисторов обладают большой чувствительностью к инфракрасной части спектра, что дает возможность использовать их для наблюдения и регистрации излучения слабо нагретых тел.







Дата добавления: 2014-11-10; просмотров: 1790. Нарушение авторских прав; Мы поможем в написании вашей работы!



Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия