Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Коррозионные гальванические элементы





 

Процессы окисления металлов при контакте с растворами электролитов имеют целый ряд специфических особенностей, позволяющих объединить их по механизму протекания в большую группу процессов электрохимической коррозии.

Рассмотрим для примера типичный случай электрохимической коррозии - растворение железа в разбавленной серной кислоте:

Fe + H2SO4= FeSO4+ H2.

Как известно, приведенную реакцию можно записать и так:

Fe + 2H+= Fe2++ H2.

Последняя форма записи наглядно показывает, что сущность рассматриваемого процесса заключается в передаче электронов от железа к ионам водорода. При этом металл окисляется, переходя из незаряженной формы Fe (ион-атомы, расположенные в узлах кристаллической решетки и находящиеся в равновесии с электронным газом) в форму положительно заряженного иона Fe2+, а водород восстанавливается, т.е. переходит из ионного состояния Н+в молекулярное Н2.

Если такой переход электрона от металла к окислителю осуществляется в одном элементарном акте (напрямую), то процессы окисления металла и восстановления окислителя происходят одновременно и коррозия протекает по химическому механизму.

Если же окисление металла и восстановление окислителя представляют собой два различных элементарных акта, то такой коррозионный процесс протекает по электрохимическому механизму. Необходимо подчеркнуть, что возможность разделения актов окисления и восстановления обусловлена именно наличием среды, обладающей ионной проводимостью.

В упрощенном виде это показано на рисунке 3.1. На участке А (аноде) ион-атом металла, например Fе переходит в раствор в виде положительно заряженного иона - Fе2+, электроны же в результате этого акта остаются в объеме корродирующего металла, сообщая его поверхности некий отрицательный заряд. А на участке К (катоде) находящиеся в коррозионной среде, например, ионы H+, адсорбируются на поверхности металла, принимают избыточные электроны и в восстановленном виде (в виде молекулы Н2) возвращаются в раствор.

Таким образом, при электрохимической коррозии суммарная коррозионная реакция состоит из двух сопряженных реакций:

1. Fe = Fe2++ 2e (3.1) 2. 2H++ 2e = H2 (3.2)

Или в более общем виде:

1. Me = Men++ ne (3.3)

2. D + ne = [Dne], (3.4)

Рис. 3.1. Принципиальная схема процесса электрохимической коррозии.

где D - деполяризатор (окислитель), присоединяющий к себе n электронов, освобождающихся при ионизации металла. Причем в качестве деполяризаторов могут выступать самые разнообразные ионы и молекулы: ионы Н+, Меn+, анионы кислот; молекулы кислорода, перекиси водорода, галоидов, а также нерастворимые оксиды и гидроксиды или органические соединения.

Реакция 1 называется анодной реакцией, реакция 2 - катодной. а результирующий коррозионный процесс при таком подходе можно рассматривать как работу системы коррозионных микрогальванических элементов. Необходимое условие существования подобной системы - наличие на поверхности металла участков, различающихся по своим электрохимическим свойствам настолько, что это позволяет им образовывать гальванические пары анод - катод.

Выполнение указанного условия гарантируется тем, что поверхность реального сплава всегда электрохимически неоднородна, причем на величину электрохимического потенциала участка поверхности влияют не только микронеоднородности структуры металла (различие в составе и ориентации кристаллитов, наличие включений, границ зерен), но и субмикронеоднородности (дефекты кристаллической структуры, инородные атомы в кристаллической решетке и т.п.).

Важнейшая особенность электрохимического механизма химических реакций - это необязательность прямого контакта реагирующих частиц друг с другом, а вместо этого обязательность их контакта с металлом или иным проводником первого рода. Именно этой особенностью обеспечивается, во-первых, низкий (по сравнению с химическим механизмом) энергетический барьер подобных реакций, а во-вторых, - возможность пространственного разделения анодной и катодной реакций на поверхности электрода, обладающего металлической проводимостью. Последнее обстоятельство имеет огромное практическое и теоретическое значение.

 







Дата добавления: 2014-11-10; просмотров: 1092. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия