Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Уравнение Нернста





Как уже сказано выше, в стационарном состоянии на границе раздела металл - электролит устанавливается динамическое равновесие между переносом зарядов в прямом и обратном направлении, т.е. устанавливается так называемый ток обмена, который соответствует равенству катодного и анодного токов:

Iк= Iа= Iоб.

Если при этом перенос зарядов из металла в раствор и в обратном направлении осуществляется одним и тем же носителем, например, ионом Меn+, то на электроде реализуется не только баланс зарядов, но и баланс вещества, и после достижения равновесия убыль массы металла не происходит. Устанавливающийся в таких условиях потенциал называют равновесным или обратимым.

Рассмотренной схеме соответствует металлический электрод, помещенный в раствор, содержащий одноименные металлу ионы и не содержащий других окислителей (например, в раствор собственной соли). Обратимый потенциал такого электрода характеризует равновесие реакции:

Меn++ ne Ме (3.1)

При этом единственными носителями заряда являются ионы Меn++ и коррозия металла не происходит.

В терминах химической термодинамики равновесие в подобной системе может быть описано уравнением:

G = Go - RT ln a(Men+), (3.2)

где G - изменение изобарно-изотермического потенциала в рассматриваемой реакции; Go- изменение стандартного изобарно-изотермического потенциала;

R - универсальная газовая постоянная: R=8, 314Дж/(Кмоль); Т - абсолютная температура, К; а(Men+)- активность ионов металла.

Подставляя в это уравнение выведенное ранее (раздел 3.1.2.) выражение G = - nFE и вытекающее из него Go = - nFEo, где Е - э.д.с. гальванического элемента, в котором происходит рассматриваемая реакция, т.е. разность потенциалов между катодными и анодными участками поверхности электрода (Е = к-а), а Еo- э.д.с. аналогичного стандартного гальванического элемента (Еo=кo-аo), для рассматриваемой реакции получим:

Е = Еo + (RT/nF) ln a(Men+) (3.3)

Аналогичным образом могут быть выражены и отдельные составляющие величины Е, т.е. потенциалы прямой и обратной реакций (ки а). Например:

к= ко+ (RT/nF) ln a(Men+). (3.4)

А так как, в соответствии с конвенцией IUPAC, потенциалом электрода считается его потенциал при условии, что электродная реакция протекает в сторону восстановления (в нашем случае катодная реакция), то и обратимый потенциал рассматриваемого металлического электрода может быть рассчитан по уравнению:

Me= Meo+ (RT/nF) ln a(Men+), (3.5)

где Meo- стандартный электродный потенциал.

Полученное уравнение впервые было выведено Нернстом и имеет фундаментальное значение в теории электрохимической коррозии.

В общем случае уравнение Нернста принимает вид:

= o- (RT/nF) ln Пi(аi)ki, (3.6)

где знак Пi обозначает произведение активностей веществ, участвующих в электродной реакции, аi, причем каждая из активностей возведена в степень, равную стехиометрическому коэффициенту ki в общем уравнении реакции (напомним, что в терминах химической термодинамики стехиометрические коэффициенты исходных веществ являются отрицательными числами, а продуктов реакции - положительными).

Отметим, что = oпри условии, что активности всех компонентов равны 1 (аi= 1), так как в этом случае и их произведение равно 1, а ln1 = 0. Полученный вывод полностью соответствует определению стандартного электродного потенциала.

За стандартный электродный потенциал (e o) принята величина э.д.с., которая возникла бы в гальваническом элементе, составленном из нормального водородного электрода и исследуемого металлического электрода, опущенного в раствор собственной соли, при условии, что активности всех участвующих в реакции веществ равны единице.

 







Дата добавления: 2014-11-10; просмотров: 1627. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия