Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Реальная вольтамперная характеристика p-n перехода





 

При выводе уравнения (1.37) не учитывались такие явле­ния, как термогенерация носителей в запирающем слое перехода, поверхностные утечки тока, падение напряже­ния на сопротивлении нейтральных областей полупровод­ника, а также явления пробоя при определенных обрат­ных напряжениях. Поэтому экспериментальная вольтам­перная характеристика p-n перехода (кривая 2 на рис. 1.11) отличается от теоретической (кривая 1).

При обратном включе­нии p-n перехода отли­чия обусловлены генера­цией носителей зарядов и пробоем p-n перехода. Количество генерируемых носителей пропорциональ­но объему запирающего слоя, который зависит от ширины p-n перехода. По­скольку ширина запираю­щего слоя пропорциональ­на , ток генерации будет расти при увеличе­нии обратного напряже­ния. Поэтому на реальной характеристике при увеличении обратного напряжения до определенного значения наблюдается небольшой рост об­ратного тока. Возрастанию обратного тока способствуют также токи утечки.

При некотором обратном напряжении наблюдается рез­кое возрастание обратного тока. Это явление называют пробоем p-n перехода. Существуют три вида пробоя: тун­нельный, лавинный и тепловой. Туннельный и лавинный пробои представляют собой разновидности электрическо­го пробоя

Рисунок 1.11 Отличие реальной вольтамперной характеристики p-n перехода

от теоретической.

 

и связаны с увеличением напряженности элек­трического поля в переходе. Тепловой пробой определяет­ся перегревом перехода.

Туннельный пробой обусловлен прямым переходом элек­тронов из валентной зоны одного полупроводника в зону проводимости другого, что становится возможным, если напряженность электрического поля в p-n переходе из кремния достигает значения 4× 105 В/см, а из германия -2× 105 В/см. Такая большая напряженность электричес­кого поля возможна при высокой концентрации примесей в p- и n-областях, когда толщина p-n перехода становит­ся весьма малой (см. формулу (1.31)). Под действием силь­ного электрического поля валентные электроны вырыва­ются из связей. При этом образуются парные заряды электрон-дырка, увеличивающие обратный ток через переход. На рис. 1.10 кривая 5 представляет собой обратную ветвь вольт-амперной характеристики перехода, соответствую­щую туннельному пробою.

В широких p-n переходах, образованных полупровод­никами с меньшей концентрацией примесей, вероятность туннельного просачивания электронов уменьшается и бо­лее вероятным становится лавинный пробой. Он возника­ет тогда, когда длина свободного пробега электрона в по­лупроводнике значительно меньше толщины p-n перехода. Если за время свободного пробега электроны приобретают кинетическую энергию, достаточную для ионизации атомов в p-n переходе, наступает ударная ионизация, со­провождающаяся лавинным размножением носителей заря­дов. Образовавшиеся в результате ударной ионизации сво­бодные носители зарядов увеличивают обратный ток пере­хода. Увеличение обратного тока характеризуется коэф­фициентом лавинного умножения М:

, (1.40)

где UПРОБ - напряжение начала пробоя; m зависит от ма­териала полупроводника. На рис 1.11 лавинному пробою соответствует кривая 4.

Тепловой пробой обусловлен значительным ростом ко­личества носителей зарядов в p-n переходе за счет нару­шения теплового режима. Подводимая к p-n переходу мощность Рподв = IобрUобр расходуется на его нагрев.

Выделяющаяся в запирающем слое теплота отводится преимущественно за счет теплопроводности. Отводимая от p-n перехода мощность Ротв пропорциональна разно­сти температур перехода Tпер и окружающей среды Токр:

,

где Rт - тепловое сопротивление, 0К/Вт, определяющее перепад температур, необходимый для отвода 1 Вт мощнос­ти от p-n перехода в окружающую среду.

При плохих условиях отвода теплоты от перехода воз­можен его разогрев до температуры, при которой происхо­дит тепловая ионизация атомов. Образующиеся при этом носители заряда увеличивают обратный ток, что приводит к дальнейшему разогреву перехода. В результате такого нарастающего процесса p-n переход недопустимо разогре­вается и возникает тепловой пробой, характеризующийся разрушением кристалла (кривая 3).

Увеличение числа носителей зарядов при нагреве p-n перехода приводит к уменьшению его сопротивления и выделяемого на нем напряжения. Вследствие этого на об­ратной ветви вольтамперной характеристики при тепло­вом пробое появляется участок с отрицательным диффе­ренциальным сопротивлением (участок АВ на рис. 1.11).

Отличия реальной характеристики от теоретической на прямой ветви, в основном, обусловлены распределенным (объёмным) сопротивлением электронной и дырочной областей r1 за пределами запираю­щего слоя (рисунок 1.12).

Если сопротивление запирающего слоя обозначить rд, то кристалл полупроводника с запирающим слоем можно представить в виде последовательного соединения рези­сторов rд и r1.

При прохождении тока IПР на сопротивлении r1 падает часть напряжения внешнего источника и на запирающем слое действует напряжение UПЕР = UПР – IПР× r1. Уравнение вольтамперной характеристики в этом случае может быть записано в следующем неявном виде:

.

Рисунок 1.12 Упрощенная эквивалентная схема p-n перехода с распределенным сопротивлением полупроводника.

 

Поскольку UПЕР < UПР реальная характеристика идет ниже теоретической. Когда напряжение на запирающем слое становится равным контактной разности потенциа­лов, запирающий слой исчезает, и дальнейшее увеличение тока ограничивается распределенным сопротивлением по­лупроводников p- и n-типа. Таким образом, в точке С при UПР = UК вольтамперная характеристика переходит в пря­мую линию.

 







Дата добавления: 2014-11-10; просмотров: 1419. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Что происходит при встрече с близнецовым пламенем   Если встреча с родственной душой может произойти достаточно спокойно – то встреча с близнецовым пламенем всегда подобна вспышке...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия