Деградация белков
Деградация белков – означает разложение белков. Этот процесс происходит в организме непрерывно и компенсируется синтезом белков в мышцах. После тренировки при условии достаточного количества аминокислот, получаемых из питания, соотношение процессов разложения и синтеза в организме имеет позитивный характер. Это означает преобладание синтеза белков и, как следствие, рост количества белков в организме и увеличение объема мышечной массы. Если организм не получает из продуктов питания достаточное количество белков, соотношение процессов синтеза и распада в организме имеет негативный характер. Это приводит к атрофии мышечной массы. Из всего этого следует необходимость ежедневного потребления достаточного количества белков, особенно при силовых тренировках и иной двигательной активности. Протеолитическая деградация белков в клетке Каждая соматическая клетка данного организма обладает одинаковым набором генов, кодирующих разнообразные белки. Не все гены активны. Экспрессия многих генов является тканеспецифической - происходит только в клетках, принадлежащих той или иной ткани организма. В случае, если продукты нескольких генов выполняют одну и ту же функцию, клетке вполне достаточно правильной экспрессии одного из них. Экспрессия целого ряда генов запускается в определён-ных условиях - в нужный момент клеточного цикла или под действием соответствующих факторов среды. Белок выполняет закреплённую за ним функцию, а затем, в определённый момент, клетке необходимо от него избавиться. Последнее обусловлено рядом причин: во - первых, дальнейшая активность белка может навредить клетке, во - вторых, нужно синтезировать новые белки, а перегрузка цитоплазмы полипептидами является источником апоптоза. Переставшие быть необходимыми, белки подвергаются протеолитической деградации. Внутриклеточную деградацию белков долгое время считали неспецифическим случайным процессом. Настоящим прорывом в данной области послужило открытие убиквитинового сигнального пути. В рамках этого пути деградации белка, которая осуществляе крупным белковым комплексом - протеосомой, предшествует присоединение к нему " цепочки" молекул небольшого пептида убиквитина. Полиубиквитиновая цепочка навешивается в строго определённый момент и является сигналом, свидетельствующим о том, что данный белок подлежит деградации. Теперь ясно, что процесс внутриклеточного протеолиза жестко регулируется и чрезвычайно важен для множества базальных клеточных функций. Долгое время считали, что вышеупомянутому протеолизу подвергаются лишь белки, локализованные в цитоплазме, допускали возможность протеолиза ядерных белков. Сейчас ясно: система работает также в отношении белков, связанных с мембранами, секретируемых белков (для этого последние должны переместиться из эндоплазматического ретикулума в цитозоль путём обратного транспорта). Система внутриклеточного протеолиза вовлечена в такие процессы как пролиферация клеток, развитие и дифференцировка, реакция на стресс и патогены, репарация ДНК. Нарушения этой сложной системы являются причиной многих заболеваний. Стадии убиквитин-зависимого протеолиза Деградация белка по убиквитиновому пути включает две основные стадии: 1. Ковалентное присоединение к подлежащему деградации белку полиубиквитиновой цепи. 2. Деградация белка 26S протеосомой. Деградация белков, ассоциированных с мембраной Процессирование белков, ассоциированных с мембраной, отличается от деградации цитоплазматических белков. Не вдаваясь в детали этого процесса, обсудим основные отличия: 1. Деградация осуществляется лизосомами. 2. Для таргетинга белка в лизосомы обычно достаточно моноубиквитинирования. В некоторых случаях формируется полиубиквитиновая цепь. 3. В случае формирования полиубиквитиновой цепи связывание происходит по 63 лизину. Биологический смысл убиквитинирования Убиквитин - зависимый протеолиз существует только у эукариот (отсутствует у прокариот и архей). В то же время упрокариот и архей есть АТФ - зависимые протеазы, принципиально схожие с 26S протеосомой: состоят из двух кэпирующих субъединиц, ответственных за узнавание субстрата и обладающих АТФазной активностью и каталитической субъединицы - цилиндра. Их основное отличие от 26S протеосомы состоит в том, что кэпирующая субъединица узнает непосредственно субстрат - определённый мотив в структуре белка, говорящий о том, что он подлежит деградации. Из-за этого число потенциальных субстратов ограничено. Таким образом, первое преимущество убиквитинирования - увеличение числа потенциальных субстратов засчет большого количества ферментов осуществляющих убиквитинирование и возможности их комбинирования. Другое важное преимущество убиквитинирования состоит в том, что оно обратимо. Для таргетинга белка в протеосому не достаточно одной молекулы убиквитина, нужна мультиубиквитиновая цепь - деградация происходит не сразу и у клетки есть время подумать (kinetic proofreading). Таким образом обеспечивается гибкость системы протеолиза. Итак, мы рассмотрели, не вдаваясь в детали, процесс убиквитин-зависимой деградации белков в клетке. Этот процесс - один из лежащих в основе сложной системы регуляции жизнедеятельности эукариотической клетки, так как позволяет: 1. В строго определённый момент подвергать специфическому протеолизу огромное количество разнообразных белков. 2. Отменять деградацию, если белок всё ещё нужен клетке.
|