Студопедия — ДЕДУКЦИЯ И ИНДУКЦИЯ В УЧЕБНОМ ПРОЦЕССЕ
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ДЕДУКЦИЯ И ИНДУКЦИЯ В УЧЕБНОМ ПРОЦЕССЕ






 

Как в любом процессе мышления (научного или обыденного), так и в процессе обучения дедукция и индукция взаимосвязаны. «Индукция и дедукция связаны между собой столь же необ­ходимым образом, как синтез и анализ. Вместо того чтобы односторонне превозносить одну из них до небес за счет другой, надо стараться применять каждую на своем месте, а этого можно добиться лишь в том случае, если не упускать из виду их связь между собой, их взаимное дополнение друг друга»7.В индукции мы идем от посылок, выражающих знания меньшей степени общности, к новому суждению большей степени общности, от отдельных конкретных явлений к обобщению. В дедукдии ход рассуждения противоположный, т. е. от обобщений, выводов мы идем к отдельным конкретным фактам или суждениям меньшей степени общности.

В процессе обучения индуктивный и дедуктивный методы используются в единстве. Индуктивный метод используется тог­да, когда изучается новый материал, трудный для учащихся, и когда в результате беседы они смогут сделать сами определен­ное заключение, обобщение, сформулировать правило, теорему или некоторую закономерность. Индуктивный метод в большей мере активизирует учащихся, однако требует от учителя творчес­кого подхода и гибкости в преподавании. При этом затрачивает­ся больше времени на подведение учащихся к самостоятельному заключению.

Дедуктивный метод состоит в том, что учитель сам фор­мулирует общее суждение, выражающее какое-то правило, закон, теорему и т. д., а затем применяет его, иллюстрирует частными примерами, случаями, фактами, событиями и т. д. Соединение дедукции и индукции в процессе обучения дает два пути объясне­ния материала: «Индуктивно-дедуктивный путь объяснения материала, когда последнее начинается с индукции и переходит затем в дедукцию (возможно, при значительном перевесе индук­ции), и путь дедуктивно-индуктивный, когда сообщение уча­щимся нового осуществляется самим учителем в виде готового, сформулированного им правила или положения с последующими комментариями»8.

К. Д, Ушинский высоко ценил применение индукции при изучении грамматики. На специально подобранных примерах он развивал у детей умение подмечать закономерности языка и де­лать самостоятельные обобщения, формулировать правила, что имело огромное значение для развития мышления младших школьников. Дедукцию Ушинский ценил не меньше индукции и большую роль в обучении языку отводил последующим упра­жнениям, направленным на подыскание самими учащимися при­меров на только что сформулированное правило. Известный советский методист А. В. Текучев, обобщив данные эксперимен­тальной проверки применения этих двух способов изучения мате­риала, сделал вывод о том, что в работе над темой «Однородные члены предложения» (общее понятие, союзы при однородных членах, обобщающие слова) с одинаковым успехом могут быть использованы оба пути; изучение же правил постановки знаков препинания при однородных членах предпочтительнее проводить дедуктивно-индуктивным способом9. Эти же приемы использу­ются не только на уроках родного языка, но и на уроках матема­тики, истории, физики и др. Соответствующая методика преподавания школьного предмета рекомендует учителям более конкретное использование этих методов в работе над отдельными темами учебной программы.

В математике имеется много приверженцев как индуктивного, гак и дедуктивного метода. Например, Л. Д. Кудрявцев полага­ет, что «на первых этапах обучения надо отдавать предпочтение индуктивному методу, постепенно подготавливая и используя дедуктивный подход»10, ибо индуктивные методы изложения материала, при которых происходит последовательное обобще­ние понятий, способствуют более активному усвоению материа­ла. Далее он отмечает: «В последние годы наблюдается стремле­ние заменять по возможности индуктивный подход дедуктивным, целесообразность этого часто представляется сомнительной»11.

Однако как при индуктивном, так и при дедуктивном методе при изложении новых понятий или новых общих теорий необ­ходимо отводить значительное время на конкретные иллюст­рации, на разбор примеров, анализ частных ситуаций. От самого учителя зависит оптимальный выбор методов, позволяющий на высоком уровне самостоятельности организовать познаватель­ную деятельность учащихся.

В математике используются различные виды индукции: пол­ная, неполная и математическая. Применение математической индукции покажем на следующем примере. Надо определить сумму л первых нечетных чисел:

1+3 + 5 + 7 +... + (2 n -1)12.

Обозначив эту сумму через S (n), положим n = 1, 2, 3, 4, 5; тогда будем иметь:

S (1)=1,

S (2)= 1+3=4,

S (3)=1+3 + 5 = 9,

S (4)=1+3 + 5 + 7 = 16,

S (5)=1 + 3 + 5+ 7 + 9=25.

Мы наблюдаем интересную закономерность: при n = 1, 2, 3, 4, 5 сумма л последовательных нечетных чисел равна n2. Но заклю­чение по аналогии, что это имеет место при любом л, сделать нельзя, ибо оно может оказаться ошибочным. Применим метод математической индукции, т. е. предположим, что для какого-то числа л наша формула верна, и попытаемся доказать, что Тогда она верна и для следующего числа n +1. Итак, мы полагаем, что S (n)-1 + 3 + 5 +... + (2 n -1)= n 2. Вычислим S (n +1)=1+3 + 4+ 5 +... +(2 n - 1) + (2 n +1). Но по предположению сумма n первых слагаемых равна л2, следовательно, S (n +1) = n 2 + (2 n + 1) = (n +1)2.Итак, предположив, что S (n) — n2, мы доказали, чтo S (n + 1) = (n +1)2. Но мы выше проверили, что эта формула верна для n = 1, 2, 3, 4, 5, следовательно, она будет верна и для n =6) и для n =7и т. д. Формула считается доказанной для любого числа слагаемых.

Этим же методом доказывается, что сумма n первых натура­льных чисел, обозначенная S 1(n), равна т. е.

В математическом мышлении присутствуют не только логи­ческие рассуждения, но и математическая интуиция, фантазия и чувство гармонии, позволяющие предвидеть ход решения зада­чи или доказательства теоремы. Однако в математике, пишет Л. Д. Кудрявцев, «интуитивные соображения и правдоподобные рассуждения отдаются на суд холодного рассудка для их изучения, доказательства или опровержения». Истинность суждения там доказывается «не проверкой его на ряде примеров, не прове­дением ряда экспериментов, что не имеет для математики до­казательной силы, а чисто логическим путем, по законам фор­мальной логики»14. В ходе обучения математике предполагается, что «использование знаний, математического аппарата, интуи­ции, чувства гармонии, фантазии, умения думать, логики, экс­перимента происходит не последовательно по этапам — все это взаимодействует между собой в течение всего процесса...»15. В результате этого взаимодействия у учащихся вузов и средних учебных заведений формируется, воспитывается математическая культура. Итак, единство дедукции и индукции в обучении и в на­учном творчестве своеобразно и ярко проявляется в математи­ке — науке, значительно отличающейся от естественных и от общественных наук как по методам доказательства, так и по методике передачи знаний учащимся.

Выше мы приводили типы и примеры сокращенных умозак­лючений (категорического силлогизма, условных, разделитель­ных и др.).

В ходе обучения математике учащиеся приобретают способ­ность к свертыванию процесса математического рассуждения при решении задач знакомого типа — об этом писали еще известные русские методисты С. И. Шохо-Троцкий (в 1916 г.) и Ф. А. Эрн (в 1915 г.). Они отмечали, что «при многократном решении однотипных задач учащимися отдельные этапы мыслительного процесса сокращаются и перестают осознаваться, но когда нуж­но, учащийся может вернуться к полному развернутому рассуж­дению»16. Методисты-математики П. А. Шеварев и Н. А. Менчинская в начале 40-х годов также установили соответственно на алгебраическом и арифметическом материале, что «наряду с развернутыми умозаключениями в умственной деятельности школьников при решении задач занимают определенное место и сверну­тые умозаключения, когда ученик не осознает правила общего положения, в соответствии с которыми он фактически действу­ет... не выполняет всей той цепи соображений и умозаключений, которые образуют полную, развернутую систему решения»17. Сокращение процесса рассуждения возникает благодаря упра­жнениям, причем способные к математике учащиеся переходят к свернутым рассуждениям быстро, средние — медленнее, у не­способных же не замечалось сколько-нибудь заметного свертыва­ния даже в результате многих упражнений. В. А. Крутецкий высказывает такую гипотезу: «Вообще никогда и нигде, вероят­но, человек не мыслит до конца развернутыми структурами»18. Однако способные ученики мыслят свернутыми структурами, сокращенными умозаключениями при решении не только одно­типных, но и новых задач; при этом по просьбе экспериментатора эти учащиеся восстанавливали свернутые структуры до полной (с их точки зрения) структуры. «Свернутые» мыслительные струк­туры способствуют более быстрой переработке информации, ускорению процесса решения задач, упрощают выполнение сложных операций.

Изучая компоненты структуры математических способностей школьников, В. А. Крутецкий проанализировал высказывания ряда ученых-математиков и преподавателей математики средних школ по этому вопросу. Приблизительно 38% опрошенных това­рищей обратили внимание на свертывание процесса рассуждения у способных учащихся. Приведем эти высказывания. «Процесс рассуждения у способных учащихся сокращен и никогда не раз­вернут до полной логической структуры. Это очень экономно, и в этом его значение»; «Я часто наблюдал, как мыслят способ­ные ученики, — для учителя и класса это развернутый и последо­вательный во всех звеньях процесс, а для себя — это отрывоч­ный, беглый, сокращенный, прямо стенограмма мысли»19.

Перечисляя качества ума этих учащихся, почти все опрошен­ные учителя математики и математики-ученые (98%) отмечали способность к обобщению. «Способный ученик быстро обобщает не только математический материал, но и метод рассуждения, доказательства»; некоторые из опрошенных указывали на спосо­бность и даже своеобразную «страсть» к обобщению, способ­ность «видеть общее в разных явлениях», «способность прийти от частного к общему»20.

Если проанализировать знания, умения и навыки учащихся, относящиеся к использованию дедукции и индукции в процессе обучения по дисциплинам нематематического профиля, то наря­ду с положительными моментами можно выделить и ряд недо­статков. Прежде всего недостаточно развито умение использовать дедуктивный ход рассуждений: дав верное определение учащийся не всегда справляется с анализом конкретного произведения под углом зрения этого определения, у некоторых yчащихся отсутствуют выводы по теме сочинения, в сознании учащихся иногда имеет место разрыв между фактологическими и те­оретическими знаниями и т. д.

Отмеченные положительные моменты и недостатки в знаниях учащихся свидетельствуют о важном значении умелого сочетания индукции и дедукции в ходе изложения, закрепления и проверки усвоения школьного материала. Общих рецептов по поводу того, как, в какой мере использовать дедуктивный или индуктивные метод в обучении, дать нельзя. В связи с этим можно отметить высказывание Л. Д. Кудрявцева о методических принципах пре­подавания математики: «К сожалению, не существует точных рецептов, как надо преподавать различные разделы математики. Методика преподавания математики не наука, а искусство, Правда, это вовсе не означает, что методике преподавания мате­матики не надо учить. Всякому искусству можно и должно учить: учатся и художники, и музыканты, и артисты, и писатели».

На основе разбора ошибок, допускаемых в педагогическом процессе, можно еще раз сделать вывод о творческом характере применения различных методов обучения и воспитания, о недо­пустимости шаблонного подхода в процессе обучения.

 







Дата добавления: 2014-10-22; просмотров: 779. Нарушение авторских прав; Мы поможем в написании вашей работы!



Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Что происходит при встрече с близнецовым пламенем   Если встреча с родственной душой может произойти достаточно спокойно – то встреча с близнецовым пламенем всегда подобна вспышке...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия