Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

МОДАЛЬНЫЕ ЛОГИКИ





 

В классической двузначной логике рассматривались простые и сложные ассерторические суждения, т. е. такие, в которых не установлен характер связи между субъектом и предикатом. На­пример: «Морская вода — соленая» или «Дождь то начинал хле­стать теплыми крупными каплями, то переставал».В модальных суждениях раскрывается характер связи между субъектом и предикатом или между отдельными простыми суж­дениями в сложном модальном суждении. Например: «Необ­ходимо соблюдать правила уличного движения» или «Если будет дуть попутный ветер, то, возможно, мы приплывем в гавань до наступления темноты».

Модальными являются суждения, которые включают модаль­ные операторы (модальные понятия), т. е. слова «необходимо», «возможно», «невозможно», «случайно», «запрещено», «хорошо» и многие другие (см. гл. Ш, § 6 «Деление суждений по модаль­ности»). Модальные суждения рассматриваются в специальном направлении современной формальной логики — в модальной логике.

Изучение модальных суждений имеет длительную и много­гранную историю. Мы отметим лишь некоторые из ее аспектов. Модальности в логику были введены Аристотелем. Термин «воз­можность», по Аристотелю, имеет различный смысл. Возмож­ным он называет и то, что необходимо, и то, что не необходимо, и то, что возможно. Исходя из понимания модальности «возмож­ность», Аристотель писал о неприменимости закона исключен­ного третьего к будущим единичным событиям.

Наряду с категорическим силлогизмом Аристотель исследует и модальный силлогизм, у которого одна или обе посылки и заключение являются модальными суждениями. Я. Лукасевич в книге «Аристотелевская силлогистика с точки зрения современ­ной формальной логики» две главы посвящает аристотелевой модальной логике предложений и модальной силлогистике Ари­стотеля40. Аристотель рассматривает модальную силлогистику по образцу своей ассерторической силлогистики: силлогизмы подразделяются на фигуры и модусы, неправильные модусы отбрасываются с помощью их интерпретации на конкретных терминах.

Согласно Аристотелю, случайность есть то, что не необходи­мо и не невозможно, т. е. р — случайно означает то же самое, что и р — не необходимо и р — не невозможно, но Лукасевич отмечает, что аристотелевская теория случайных силлогизмов полна серьезных ошибок41. Итог Лукасевича такой: пропозицио­нальная модальная логика Аристотеля имеет огромное значение для философии; в работах Аристотеля можно найти все элемен­ты, необходимые для построения полной системы модальной логики; однако Аристотель исходил из двузначной логики42, в то время как модальная логика не может быть двузначной. К идее многозначной логики Аристотель подошел вплотную, рассуждая о «будущем морском сражении». Следуя Аристотелю, Лукасевич в 1920 г. построил первую многозначную (трехзначную) логику. Так осуществляется связь модальных и многозначных логик.

Значительное внимание разработке модальных категорий уделяли философы в Древней Греции и особенно Диодор Крон, рассматривавший модальности в связи с введенной им времен­ной переменной. В средние века модальным категориям также уделялось большое внимание. В XIX в. категорию вероятности разрабатывали Дж. Буль и П. С. Порецкий.

Возникновение модальной логики как системы датируется 1918 годом, когда американский логик и философ Кларенс Ир­винг Льюис (1888—1964) в работе «A Survey of Symbolic Logic» сформулировал модальное исчисление, названное им впоследст­вии 53.

В книге «Symbolic logic», написанной им совместно с К. Лэнгфордом в 1932 г., он сформулировал еще пять модальных логи­ческих систем, связанных с 53 и между собой. Это системы 51, S2, 54, 55, S6.

Приведем описание модальной системы S I43

I. Исходные символы. 1) р, q, r и т. д. — пропозициональные переменные; 2) ~ р — отрицание р; 3) — конъюнкция р и q; 4) — строгая импликация льюисовской системы; 5)

модальный оператор возможности (возможно р); 6) p = q — строгая эквивалентность, p = q равносильно

П. Аксиомы системы S 1:

1) 2) 3) 4) 5) 6) 7)

Аксиома 5 может быть выведена из остальных, как было показано позднее. Так как конъюнкция связывает «сильнее», чем импликация, то скобки можно опустить или заменить их точ­ками, как это сделано у Льюиса.

III. Правила вывода S 1.

1. Правило подстановки. Любые два эквивалентных друг дру­гу выражения взаимозаменимы.

2. Любая правильно построенная формула может быть под­ставлена вместо р, или q, или r и т. д. в любом выражении.

3. Если выводимо р и выводимо q, то выводимо

4. Если выводимо р и выводимо то выводимо q.

Льюис построил модальную пропозициональную логику S 1 в виде расширения немодального (ассерторического) пропозици­онального исчисления (сокращенно АПИ). При этом основные черты 51 и других его исчислений были скопированы с фор­мализованной логической системы Principia Mathematica Рассела и Уайтхеда, сформулированы с помощью понятий, только терминологически отличающихся от понятий, использованных в Principia Mathematica. Кроме Рассела и Уайтхеда идеи клас­сической логики развивали многие современные математические логики, например американский логик и математик С. Клини44. Исчисления Льюиса построены аксиоматически по образцу Principia, по аналогии с Principia Льюис доказывает рад специфи­ческих теорем.

В классической двузначной логике логическое следование ото­ждествляется с материальной импликацией, допускаются такие формы вывода: 1) т. е. истинное суждение следует из любого суждения («истина следует откуда угодно») и 2) т. е. из ложного суждения следует любое суждение («из лжи следует все, что угодно»). Это противоречит нашему содержательному, практическому пониманию логического следо­вания, поэтому данные формулы, а также и некоторые другие, и соответствующие им принципы логического следования назы­ваются парадоксами материальной импликации.

Льюис создал свои новые системы с целью избежать этих парадоксов и ввести новую импликацию, названную им «строгой импликацией», такую, чтобы логическое следование представ­лялось не чисто формально, а по смыслу (содержательно) и новая импликация была бы ближе к союзу естественного языка «если, то». В строгой импликации Льюиса невозможно утверждать антецедент, т. е. р, и отрицать консеквент, т. е. q 45.

В системах Льюиса были устранены парадоксы материальной импликации, т. е. формулы 1) и 2) стали невыводимыми, но появились парадоксы строгой импликации. К ним относятся, например, такие формулы: 3) 4)

Итак, отождествлять строгую импликацию Льюиса со следованием нельзя.

С целью исключить парадоксы строгой импликации Льюиса немецкий математик и логик Ф. В. Аккерман (1896—1962) по­строил свою систему модальной логики. Он ввел так называемую сильную импликацию, которая не тождественна строгой имп­ликации Льюиса, и модальные операторы Аккермана и Льюиса также не являются тождественными. Аккерман все логические термины и модальные операторы определяет через сильную имп­ликацию так: NA равносильно МА равносильно Здесь А — любая правильно построенная формула систе­мы Аккермана: N — оператор необходимости; М — оператор возможности; — отрицание А; знак обозначает сильную импликацию. Знак — логическая постоянная, обозначающая «абсурдно». Эта постоянная в свою очередь определяется так: где & обозначает конъюнкцию. И последняя формула читается так: из противоречия, т. е. А и не-А, следует абсурд. В системе Аккермана не выводятся формулы, структурно подобные парадоксам, ни материальной импликации, ни строгой импликации.

Системы Льюиса и Аккермана являются бесконечнозначными. В отличие от этих систем первоначально построенные систе­мы Лукасевича являются конечнозначными: одна — трехзначная (1920), другая — четырехзначная (1953). В четырехзначной систе­ме Лукасевича46 также обнаружены парадоксы. Главный из них состоит в том, что ни одно аподиктическое предложение не истинно, т. е. ни одно суждение вида Lot (где L обозначает необходимость, а α — любая формула) не является истинным. Это означало бы, что необходимых суждений нет, т. е. модаль­ный оператор «необходимо» упраздняется. Лукасевич пишет: «Любое аподиктическое предложение должно быть отброше­но»47. Сам Лукасевич считает это достоинствο м своей системы, а понятие «необходимость» — псевдопонятием. С такой точкой зрения, конечно, согласиться нельзя.

Интерпретации модальных логик различны. Известный авст­рийский философ и логик Р. Карнап (1891—1970) пытался ин­терпретировать модальные понятия (операторы) с помощью так называемой теории «возможных миров», в которой допускается наличие множества «миров», один из которых — действитель­ный, реальный мир, а остальные — возможные миры. Необходи­мым объявляется то, что существует во всех мирах, возмож­ным — то, что существует хотя бы в одном.

Р. Карнап в 1946 г., используя понятие «описание состояния», предложил интерпретацию модальных операторов, в основе ко­торой лежала идея различия возможного и действительного ми­ров.

В ином направлении шел финский логик Я. Хинтикка. Крити­чески переосмыслив введенное Карнапом понятие «описание со­стояния», он разрабатывал технику «модальных множеств», т. е. миров (1957), — оригинальную семантическую концепцию воз­можных миров. Разработка семантики возможных миров для модальных логик продолжается.

Разнообразными проблемами модальной логики занимается американский логик Р. Фейс48.

В настоящее время разработаны многие виды модальностей (см. табл. 7).

Теорией модальных логик и построением новых модальных логических систем в нашей стране активно занимаются логики А. А. Ивин49, Я. А. Слинин50, О. Ф. Серебряников, В. Т. Пав­лов и др.

 







Дата добавления: 2014-10-22; просмотров: 928. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия