Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение. Прежде всего, найдем опорные реакции




Прежде всего, найдем опорные реакции. Балка имеет жесткое защемление на правом конце[4] и в этом закреплении при заданной вертикальной нагрузке возникают две опорные реакции: вертикальная реакция RA и реактивный момент MA. Горизонтальная реакция при действии вертикальной нагрузки равна нулю. Это следует из уравнения равновесия "сумма проекций всех сил на горизонтальную ось равна нулю". Определим RA и MA, используя два других уравнения статики. Желательно составлять такие уравнения, в каждое из которых входит только одна неизвестная. В данном случае такими уравнениями являются "сумма проекций всех сил на вертикальную ось (ось z) равна нулю" и "сумма моментов всех сил относительно точки А равна нулю":

; ;

; Из первого уравнения найдем RA = 30 кН, из второго – МА =5 кН×м. Полученные положительные знаки опорных реакций подтверждают выбранные нами направления опорных реакций: RA – вверх, а МА – против часовой стрелки. Для проверки рекомендуем использовать любое другое уравнение равновесия, например :

– 30×2 – 15×2×1 – 60 + 10×1×2,5 + 30×4+5 = – 150 + 150 = 0.

Теперь определяем внутренние усилия: поперечную силу Q и изгибающий момент М. В соответствии с методом сечений рассекаем балку на каждом участке (в данной задаче их три) произвольным сечением и рассматриваем все силы, расположенные с одной стороны от сечения: слева или справа. Удобно рассматривать все силы с той стороны от сечения, где сил меньше. Начало отсчета координаты x на каждом участке можно выбирать произвольным образом. Например, на рис. 4.6, а начало отсчета x на каждом участке – свое и находится в начале участка. Запишем выражения для Q и М на каждом участке.

Участок 1: .

Рассмотрим силы, расположенные слева от сечения. По определению поперечной силы и с учетом правила знаков для Q (см. рис. 4.5, а):

.

Здесь – равнодействующая равномерно распределенной нагрузки, действующей слева от сечения.

По определению изгибающего момента и с учетом правила знаков для М (см. рис. 4.5, б):

,

где во втором слагаемом – плечо равнодействующей равномерно распределенной нагрузки ( ), взятой слева от сечения (равнодействующая приложена по середине длины отсеченной части балки x1).

Для построения эпюр найдем значения Q и М на границах участка:

в начале участка (х1 = 0) , а ;

в конце участка ( ) ; .

Участок 2: .

Снова рассмотрим все силы, расположенные слева от сечения.

;

.

Граничные значения Q и М:

в начале участка ( ) ;

,

в конце участка ( ) ;

.

Участок 3: .

Теперь рациональнее рассмотреть все силы справа от сечения. Тогда

;

.

Из этих выражений следует, что поперечная сила на третьем участке – постоянная величина, а изгибающий момент меняется по линейному закону и на границах участка имеет следующие значения:

в начале участка ( ) ,

в конце участка ( ) .

Запишем результаты определения внутренних усилий в таблицу, сосчитав численные значения Q и М на границах участков (табл. 1).

Таблица 1

Из таблицы видно, что поперечная сила на первом участке меняет свой знак, т. е. график Q пересекает нулевую линию. Это значит, что изгибающий момент на этом участке имеет экстремум. Найдем максимальное значение М на этом участке. Сначала определим то значение координаты х1, при котором поперечная сила равна нулю. Обозначим это значение координаты х0 (см. рис. 4.6).

х0 = 1,33 м.

Чтобы найти максимальное значение изгибающего момента, подставим х0 в выражение для М на первом участке:

кН×м.

По результатам вычислений в таблице строим эпюры Q и М на каждом участке (см. рис. 4.6, б). Не забываем после построения эпюр проанализировать результаты по тем правилам проверки правильности построения эпюр, которые перечислены ранее.







Дата добавления: 2014-11-12; просмотров: 365. Нарушение авторских прав


Рекомендуемые страницы:


Studopedia.info - Студопедия - 2014-2020 год . (0.003 сек.) русская версия | украинская версия