Студопедия — Решение. Найдем геометрические характеристики заданного поперечного сечения: осевые моменты инерции относительно главных центральных осей
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение. Найдем геометрические характеристики заданного поперечного сечения: осевые моменты инерции относительно главных центральных осей






Найдем геометрические характеристики заданного поперечного сечения: осевые моменты инерции относительно главных центральных осей. Сечение имеет только одну ось симметрии, эта ось является одной из главных осей инерции. Обозначим ее z. Вторая главная ось y проходит через центр тяжести сечения. Определим положение центра тяжести сечения по формуле

.

  Рис. 4.13. Поперечное сечение балки

Статический момент определяем относительно произвольной оси аа, перпендикулярной оси z (оси симметрии), как сумму статических моментов фигур, составляющих заданное поперечное сечение. В данном случае сечение разбиваем на три прямоугольника и площадь сечения состоит из площадей трех фигур: двух стенок А с и полки А п: . Ось аа рационально расположить так, чтобы статический момент одной из фигур равнялся нулю. Это произойдет, если ось аа провести через центр тяжести какой-то фигуры, например, через центр тяжести полки (см. рис. 4.13). Тогда статический момент полки равен нулю и полный статический момент Sa равен удвоенному статическому моменту стенки:

.

Здесь первый множитель – удвоенная площадь стенки, второй – координата центра тяжести стенки[5].

Найдя положение центра тяжести сечения, проведем через него вторую главную ось y (см. рис. 4.13). Рекомендуем рисовать сечение в масштабе, тогда по масштабу можно проконтролировать правильность определения центра тяжести сечения. В данном случае очевидно, что центр тяжести должен быть смещен к полке.

Теперь определим осевой момент инерции относительно оси y. Находим его как сумму моментов инерции трех фигур: двух стенок () и полки (). Для определения момента инерции каждой фигуры используем формулу

.

Здесь – момент инерции фигуры относительно оси y 0, проходящей через центр тяжести фигуры и параллельной оси y, а – расстояние между осями y и y 0. Таким образом,

.

Расстояния h 1 и h 2 показаны на рис. 4.13. Моменты инерции полки и стенки относительно собственных осей y 0 находим по формуле, справедливой для прямоугольника (4.4),

,

где b – ширина прямоугольника (параллельна оси y 0); h – его высота. Например, для полки

.

Примечание. Рекомендуем для тренировки аналогично найти момент инерции поперечного сечения относительно оси z, несмотря на то, что в проверке прочности этой балки он не участвует.

Строим эпюры поперечной силы и изгибающего момента, выражая ординаты через неизвестный параметр нагрузки (в данной задаче через q – см. рис. 4.12, б).

Прежде чем находить положение опасных сечений и опасных точек по эпюрам Q и М, выясним как рационально расположить поперечное сечение балки: полкой вверх или полкой вниз. Поскольку чугун – хрупкий материал и прочность при растяжении у него меньше прочности при сжатии, оптимальным положением сечения является такое положение, при котором максимальные растягивающие напряжения будут меньше максимальных по модулю сжимающих напряжений. В рассматриваемом примере максимальный изгибающий момент отрицателен, то есть балка в сечении, где действует , изгибается выпуклостью вверх и растягивающие напряжения будут в верхних волокнах. Поэтому располагаем поперечное сечение так, чтобы центр тяжести сечения был ближе к верхним волокнам, т. е. полкой вверх.

Найдем положение опасных сечений и опасных точек так же, как в двутавровой балке (см. рис. 4.12, в). Поскольку максимальная поперечная сила и наибольший изгибающий момент действуют в данном примере в одном сечении, то опасные точки 1, 1¢, 2 и 3 расположены в одном сечении а–а. Особенностью расчета балок из хрупкого материала является то обстоятельство, что точки 1 и 1¢ не являются равноопасными. Так как хрупкий материал имеет разную прочность при растяжении и сжатии, то проверять прочность надо как в точке 1, в которой действуют максимальные растягивающие напряжения, так и в точке 1¢ с наибольшими сжимающими напряжениями. Если эпюра изгибающих моментов меняет свой знак, как в рассматриваемом примере, то появляется еще одна опасная точка – точка 4 (см. рис. 4.12, в). В этой точке действуют растягивающие напряжения, и поскольку она расположена дальше от нейтральной оси, чем точка 1, величина растягивающего напряжения в точке 4 может оказаться больше, чем в точке 1 несмотря на то, что изгибающий момент в сечении b–b меньше, чем в сечении а–а.

Определим допускаемую нагрузку из условия прочности в точке 1, где действуют максимальные растягивающие напряжения:

,

откуда

.

Здесь – момент сопротивления растяжению; – расстояние до наиболее растянутого волокна показано на рис. 4.13. Для рассматриваемого примера и .

Проверим прочность в остальных опасных точках, используя найденное значение допускаемой нагрузки. В точке 1¢ с наибольшими сжимающими напряжениями

,

где – момент сопротивления сжатию. (Расстояние показано на рис. 4.13.)

Для рассматриваемого примера опасной является и точка 4. Условие прочности в этой точке:

.

Чтобы проверить прочность в точке 2 с максимальными касательными напряжениями, находящейся в напряженном состоянии " чистый сдвиг", необходимо применить теорию прочности, справедливую для хрупкого материала. Например, из теории Мора (4.8) для чистого сдвига получим следующее условие прочности:

,

где максимальное касательное напряжение определяем по формуле Журавского (4.2), в которой статический момент находим для отсеченной части, расположенной по одну (любую) сторону от нейтральной оси.

Наконец, условие прочности в точке 3, где действуют и нормальные (растягивающие), и касательные напряжения, записываем по теории прочности для " балочного" напряженного состояния, справедливой для хрупкого материала, например по теории Мора (4.8). Нормальные и касательные напряжения в этой точке определяем по формулам (4.1) и (4.2).

Если в какой-то точке условие прочности не будет выполняться, необходимо найти новое значение допускаемой нагрузки из условия прочности в этой точке.

Примечание; В рассматриваемой задаче, кроме условия прочности, должно выполняться и условие жесткости, т. е. максимальный прогиб не должен превосходить значения допускаемого прогиба. Эта часть задачи является необязательной. Вопрос о нахождении прогибов решается в следующем разделе " Определение перемещений и проверка жесткости балок".

4.1.3. Определение перемещений и проверка жесткости балок (задачи № 19, 20)

Рекомендуемая литература

Александров А. В., Потапов В. Д., Державин Б. П. Сопротивление материалов. М.: Высш. шк., 1995. Гл. 8 (§ 8.1–8.5, 8.9).

Гастев В. А. Краткий курс сопротивления материалов. М.: Физматгиз, 1977. Гл. 5 (§ 25), гл. 8.

Дарков А. В., Шпиро Г. С. Сопротивление материалов. М.: Высш. шк., 1989. Гл. 7 (§ 7.13–7.14), гл. 11 (§ 11.4, 11.5).







Дата добавления: 2014-11-12; просмотров: 1793. Нарушение авторских прав; Мы поможем в написании вашей работы!



Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия