Медиана и перцентили
Для порядковых (ранговых) распределений, где критерием середины ряда является медиана, среднеквадратическое отклонение и дисперсия не могут служить характеристиками рассеяния вариант. То же свойственно и для открытых вариационных рядов. Указанное обстоятельство связано с тем, что отклонения, по которым вычисляются дисперсия и σ, отсчитываются от среднего арифметического, которое не вычисляется в открытых вариационных рядах и в рядах распределений качественных признаков. Поэтому для сжатого описания распределений используется другой параметр разброса – квантиль (синоним - «nерцентиль»), пригодный для описания качественных и количественных признаков при любой форме их распределения. Этот параметр может использоваться и для перевода количественных признаков в качественные. В этом случае такие оценки присваиваются в зависимости от того, какому по порядку квантилю соответствует та или иная конкретная варианта. В практике медико-биологических исследований наиболее часто используются следующие квантили: – медиана; , – квартили (четверти), где – нижний квартиль, – верхний квартиль. Квантили делят область возможных изменений вариант в вариационном ряду на определенные интервалы. Медиана (квантиль ) – это варианта, которая находится в середине вариационного ряда и делит этот ряд пополам, на две равные части (0, 5 и 0, 5). Квартиль делит ряд на четыре части: первая часть (нижний квартиль ) – это варианта, отделяющая варианты, числовые значения которых не превышают 25% максимально возможного в данном ряду, квартиль отделяет варианты с числовым значением до 50% от максимально возможного. Верхний квартиль () отделяет варианты величиной до 75% от максимально возможных значений. В случае асимметричности распределения переменной относительно среднего арифметического для его характеристики используются медиана и квартили. В этом случае используется следующая форма отображения средней величины – Ме (; ). Например, исследуемый признак – «срок, в котором ребенок начал самостоятельно ходить» - в исследуемой группе имеет ассиметричное распределение. При этом, нижнему квартилю () соответствует срок начала ходьбы – 9, 5 месяцев, медиане – 11 месяцев, верхнему квартилю () – 12 месяцев. Соответственно, характеристика средней тенденции указанного признака будет представлена, как 11 (9, 5; 12) месяцев.
|