Модуляция OFDM и преобразование Фурье
Один из возможных вариантов реализации передачи информации на многих несущих показан на рис. 8. Реализовать тысячи генераторов и модуляторов – совершенно нереально, поэтому этот вариант непригоден для практики. Рассмотрим альтернативный метод модуляции несущих колебаний. Независимо от способа (QPSK или QAM) модулированное колебание представляет собой сумму синфазной компоненты (косинусоиды) с амплитудой, равной вещественной части нормированного комплексного модуляционного символа Re{ c }= cI, и квадратурной компоненты с амплитудой, равной мнимой части модуляционного символа Im{ c }= cQ. Значения модуляционных символов в процессе передачи меняются в соответствии с передаваемыми данными. Таким образом, надо умножать опорное синфазное колебание на вещественные части комплексных символов cI, квадратурное колебание - на мнимые части cQ, а результаты перемножения - складывать. Эту операцию можно выполнять различными способами. Например, можно все эти действия выполнять в цифровой форме, а обработанные данные подвергать затем цифроаналоговому преобразованию. Но можно сначала осуществить цифроаналоговое преобразование вещественной и мнимой частей комплексных модуляционных символов, а умножение их на синфазное и квадратурное колебания (а это есть не что иное, как амплитудная модуляция) и сложение выполнять в аналоговой форме. Эти преобразования стали реальными после того, как сравнили требуемые действия при модуляции с обратным преобразованием Фурье. Если попытаться максимальное количество действий выполнить в комплексной форме (а для этого есть основания, поскольку для операций с комплексными колебаниями разработано много быстрых алгоритмов), то сигнал несущей с номером n и частотой fn, модулированной символом cn, может быть записан в виде вещественной части произведения комплексного модуляционного символа cn и комплексной экспоненты, или комплексного колебания с частотой fn: (1) Частота fn представляет собой n -тую гармонику основной частоты 1/TU, то есть величины, обратной длительности полезной части символа и равной расстоянию между частотами соседних несущих. Сигнал OFDM, записанный на интервале одного символа, представляет собой сумму всех несущих колебаний, модулированных своими модуляционными символами: (2) где суммирование выполняют по всем значениям n от n min до n max. Можно сначала выполнить суммирование, а затем взять его вещественную часть. Поскольку цифровая система передачи данных - система с дискретным временем, то при вычислениях в цифровой форме вместо непрерывной переменной t надо подставить ее дискретный аналог kT:
, (3) где T - интервал дискретизации (системная тактовая частота), а k - номер отсчета, - число отсчетов сигнала (или гармонических составляющих, они равны). Имеет смысл сравнить выражение (3) с формулой обратного дискретного преобразования Фурье: (4) Последняя формула также предполагает действия с комплексными числами. Она позволяет вычислить значения сигнала в моменты kT путем суммирования его гармонических составляющих с известными комплексными амплитудами (здесь N - число отсчетов сигнала и соответственно число его составляющих (включая постоянную), которое может быть рассчитано в дискретной форме, причем суммирование выполняют по всем n от 0 до (N- 1)). При описании сигнала формула позволяет перейти из частотной области во временную, используя для этого суммирование всех гармонических составляющих сигнала, которые являются ортогональными. Примечание: , т. е. комплексное число, где - коэффициенты при косинусах, а - при синусах. Надо отметить, что формулы (3) и (4) аналогичны, ведь радиосигнал OFDM на интервале символа также представляет собой результат суммирования ортогональных гармонических колебаний с заданными в процессе обработки и кодирования данных амплитудами. Более того, формулы для обратного преобразования Фурье и радиосигнала OFDM становятся тождественными, если положить ( - длительность длинного символа OFDM, а - системная тактовая частота) и ввести в формулу для сигнала OFDM суммирование от 0 до (N -1), причем считать нулевыми значения модуляционных символов для вновь введенных дополнительных номеров. Тогда становится ясным, что частотное уплотнение с ортогональными несущими представляет собой обратное дискретное преобразование Фурье (точнее, его вещественную часть).
Можно использовать не только вещественную, но и мнимую части вычисленного обратного преобразования Фурье. Выполним в соответствии с формулой обратного преобразования Фурье вычисление и вещественной и мнимой частей (мнимая часть обозначается как , вещественная - обозначается здесь, как и дает уже описанный сигнал s(t)): Умножим вещественную часть на колебание с частотой F 0 (будем называть его "синфазным"), а мнимую часть - на квадратурное колебание той же частоты (сдвинутое по фазе по отношению к синфазному на 90°). Тогда суммирование полученных произведений дает сигнал OFDM, спектр которого смещен на частоту F 0. Такая операция соответствует преобразованию частоты, которое неизбежно используют для переноса радиосигнала в полосу частот выбранного канала вещания: . Именно такое преобразование иллюстрирует схема формирования радиосигнала OFDM (рис. 12). На вход модулятора поступает цифровой сигнал, обрабатываемый словами по N*M бит, где N - число информационных несущих, M - число бит, передаваемых на одной несущей (например при использовании битовых карт КАМ64 M=lg264=6). После этого производят преобразование из последовательного кода в параллельные N посылок по M бит, которые модулируются согласно битовым картам, выходной сигнал с которых (X0, X1,... Xn-2, Xn-1) поступает на вход обратного дискретного преобразователя Фурье (FFT-1), где путем преобразования входных значений из спектральной во временную область производится OFDM модуляция. Получившиеся на выходе обратного FFT квадратурные составляющиеся переводятся из цифровой в аналоговую форму и переносятся в область радиочастот умножением на квадратурные составляющие сигнала с генератора радиочастоты, и полученный сигнал радиочастоты передается в эфир. Минимальная полезная скорость передачи — 4.98 Мбит/с реализуется при использовании QPSK модуляции, R =l/2 и относительной длине защитного интервала 1/4Т. Следует отметить, что такой набор параметров обеспечивает максимальную помехозащищенность системы и максимальное допустимое расстояние между передатчиками. Максимальная полезная скорость 31.67 Мбит/с достигается при использовании модуляции 64-QAM, R =7/8 и относительной длине защитного интервала 1 /32 Т. Эта скорость является достаточной для передачи 5-6 программ, не предназначенных для пере компрессирования. То есть полоса канала будет использоваться в 5-6 раз эффективнее, чем при аналоговом вещании.
|