Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Оптимизация с учетом ограничений в форме неравенств





Общая задача нелинейного программирования содержит ограничения в форме неравенств

F(Х) ® min;

G(Х) ≥ 0.

Учет таких ограничений является наиболее сложным. Простейший подход, заключающийся в последовательном решении задачи без учета ограничений с последующей проверкой ограничений и закреплении вышедших за допустимую область переменных на границе, далеко не всегда дает правильное решение.

На рис.1.12 показан такой случай F(x) ® min; g1(x) ≥ 0; g2(x) ≥ 0.

Решение без учета ограничений определяет точку A(x`1,x`2), в которой нарушены оба ограничения

g1(x) = x1max – x1 < 0;

g2(x) = x2max – x2 < 0;

Закрепление переменных на границе определяет точку В предполагаемого решения, для которой x1ОПТ = x1max, x2ОПТ = x2max.

Фактически же решение лежит в точке C. В этой точке только x2ОПТ лежит на границе и ограничение g2(x) называют активным. Переменная x1ОПТ < x1max, и ограничение g1(x) называют пассивным.

Таким образом, при решении могут возникнуть самые разные ситуации, в которых надо определять тип ограничений (активные или пассивные). При учете активных ограничений нужно использовать проекции градиента, если антиградиент выводит за допустимую область и т.п.

Поэтому для учета ограничений в форме неравенств существует много методов. Большинство основано на идее проектирования градиента и называются проективными. В последнее время начинают использовать методы, основанные на линеаризации, т.е. замене нелинейностей в исходной точке Х(0) разложением в ряд Тейлора с учетом первых двух членов разложения, линеаризации задачи и поиска минимума симплекс- методом.

Критерием окончания такого итерационного процесса является небольшая разница между значениями, полученными на смежных итерациях.

Наиболее простой метод учета ограничений – метод штрафных функций. Здесь допускается любое значение неизвестных, но при выходе за допустимую область к F(X) добавляется штрафная функция. Величина штрафа зависит от степени нарушения ограничений.

Формируемая функция имеет вид ,

где ;

.

На рис. 1.13 показана оптимизация для функции с одной переменной:

f(x)®min;

g1(x) = x maxx ³ 0;

g2(x) = xx max ³ 0;

 

Решение по методу всегда лежит за допустимой областью, но вблизи границы.

Жесткость ограничения зависит от величины коэффициента штрафа kШ. Сочетание метода штрафных функций с методами нулевого порядка позволяет строить надежные алгоритмы решения общей задачи нелинейного программирования.

 

 







Дата добавления: 2015-10-19; просмотров: 535. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия