Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Экспертные системы





Экспертные системы представляют собой класс компьютерных программ, которые выдают советы, проводят анализ, выполняют классификацию, дают консультации и ставят диагноз. Назначение экспертных систем (ЭС) заключается в решении трудно описываемых на математическом уровне задач на основе накопленной базы знаний, отражающей опыт работы экспертов в рассматриваемой проблемной области. Экспертные системы предоставляют возможность принятия решений в уникальных ситуациях, для которых алгоритм заранее не известен и формируется по исходным данным в виде цепочки рассуждений (правил принятия решений) из базы знаний. Причем решать задачу приходиться в условиях неполноты, недостоверности, многозначности исходной информации и качественных оценок процессов.

Экспертная система является инструментом, усиливающим интеллектуальные способности специалиста, и может выполнять следующие функции:

· консультанта для неопытных или непрофессиональных пользователей;

· ассистента менеджера при анализе различных вариантов решений;

· помощника при рассмотрении вопросов, относящихся к источникам знаний из смежных областей деятельности.

Экспертные системы используются во многих областях, среди которых лидирует сегмент приложений в бизнесе, производстве и медицине (рис. 1.2). Менее всего ЭС используются в науке, так как почти каждый автор считает себя уникальным экспертом [21].

.

Рис. 1.2. Области применения экспертных систем

Архитектура экспертной системы (рис. 1.3) включает в себя два основных компонента: базу знаний (хранилище единиц знаний) и программный инструмент доступа и обработки знаний, состоящий из механизмов вывода заключений (решения), приобретения знаний, объяснения получаемых результатов и интеллектуального интерфейса. Причем главным компонентом экспертной системы является база знаний, которая по отношению к другим компонентам выступает как содержательная подсистема, составляющая основную ценность. Содержимое базы знаний хорошей экспертной системы оценивается в сотни тысяч долларов, в то время как программный инструментарий – в тысячи или десятки тысяч долларов.

База знаний – это совокупность единиц знаний, которые представляют собой формализованное с помощью некоторого метода представления знаний отражение объектов проблемной области, их взаимосвязей, а также действий над объектами.

 
 

 


Рис. 1.3 Архитектура экспертной системы

В качестве методов представления знаний чаще всего используются либо правила, либо фреймы (объекты), либо их комбинация. Так, правила могут быть представлены следующим образом:

Если < условие >,

То <заключение> CF (Фактор уверенности) <значение>

В качестве факторов уверенности (CF), как правило, выступают либо условные вероятности байесовского подхода (от 0 до 1), либо фактор уверенности CF (от 0 до 100). Примеры правил имеют вид:

Правило 1: Если Коэффициент рентабельности > 0.1,

То Рентабельность = "удовл." CF 100.

Правило 2: Если Задолженность = "нет" и Рентабельность = "удовл.",

То Финансовое_сост. = "удовл." CF 80.

Правило 3: Если Финансовое_сост. = "удовл." и Репутация="удовл.",

То Надежность предприятия = "удовл." CF 90.

Фреймы(объекты) представляют собой совокупность атрибутов, описывающих свойства и отношения с другими объектами. В отличие от записей баз данных каждый объект имеет уникальное имя. Часть атрибутов отражают типизированные отношения, такие как "род – вид" (super-class – sub-class), "целое – часть" и др. Вместо конкретных значений атрибутов объектов могут быть заданы значения по умолчанию, присущие целым классам объектов, или присоединенные процедуры (process). Пример описания фреймов представлен на рис. 1.4.

 

Имя слота Указатель наследования Тип Значение
Super-сlass U FRAME ROOT
Sub-сlass U FRAME Предприятие
Код предприятия U String  
Код отрасли U String  
Отраслевой коэффициент. рентабельности. U Real  

ПРЕПРИЯТИЕ#1

Имя слота Указатель наследования Тип Значение
Super-сlass S FRAME Предприятие отрасли
Sub-сlass - - -
Код предприятия S String  
Код отрасли S String Ё
Отраслевой коэффициент. рентабельности S Real  
Коэфф. рентабельности   Real  
Задолженность   String Нет
Репутация   String Удовл
Финансовое состояние   Process Fin_sost
Надежность   Process Nad

Рис. 1.4. Описание фреймов (объектов)

Интеллектуальный интерфейс. Обмен данными между конечным пользователем и ЭС выполняет программа интеллектуального интерфейса, которая воспринимает сообщения пользователя и переводит внутреннее представление результата обработки в формат пользователя. Важнейшим требованием к организации диалога пользователя с ЭС является простота и естественность, которая в ряде случаев предполагает использование предложений естественного языка. Важно, чтобы последовательность решения задачи была гибкой, соответствовала представлениям пользователя и велась в профессиональных терминах.

Механизм вывода. Этот программный инструмент получает от интеллектуального интерфейса преобразованный во внутреннее представление запрос, формирует из базы знаний конкретный алгоритм решения задачи, выполняет его и полученный результат предоставляется интеллектуальному интерфейсу для выдачи ответа на запрос пользователя.

В основе использования любого механизма вывода лежит процесс нахождения в соответствии с поставленной целью и описанием конкретной ситуации (исходных данных) относящихся к решению единиц знаний (правил, объектов, прецедентов и т. д.) и связыванию их при необходимости в цепочку рассуждений, приводящую к определенному результату. Для представления знаний в форме правил это может быть прямая (рис. 1.5) или обратная (рис. 1.6) цепочка рассуждений.

Рис. 1.5. Прямая цепочка рассуждений

Рис. 1.6. Обратная цепочка рассуждений

Для объектно-ориентированного представления знаний характерно применение механизма наследования атрибутов, когда значения атрибутов передаются от вышестоящих классов к нижестоящим (например, на рис. 1.4 код отрасли, отраслевой коэффициент рентабельности). Также при заполнении атрибутов фрейма необходимыми данными запускаются на выполнение присоединенные процедуры.

Механизм объяснения. В процессе решения задачи или по результатам ее решения пользователь может запросить объяснение или обоснование хода решения. С этой целью ЭС должна представить соответствующий механизм объяснения. Объяснительные способности ЭС определяются возможностью механизма вывода запоминать путь решения задачи. Тогда на вопросы пользователя "Как?" и "Почему?" получено решение система всегда может выдать цепочку рассуждений до требуемой контрольной точки, сопровождая объяснения заранее подготовленными комментариями. Если решение задачи отсутствует, объяснение выдается пользователю автоматически. Полезно иметь и гипотетическое объяснение решения задачи, когда система отвечает на вопрос, что, возможно, произойдет в том или другом случае.

Однако пользователя не всегда может интересовать полный вывод решения, содержащий множество ненужных деталей. В этом случае система должна уметь выбирать из цепочки только ключевые моменты с учетом их важности и уровня знаний пользователя. Для этого в базе знаний необходимо поддерживать модель знаний и намерений пользователя. Если же пользователь не понимает полученный ответ, то система должна быть способна в диалоге (на основе поддерживаемой модели проблемных знаний) обучать пользователя тем или иным фрагментам знаний, т. е. раскрывать более подробно отдельные понятия и зависимости, если даже эти детали непосредственно в выводе не используются.

Механизм приобретения знаний. База знаний содержит знания экспертов (специалистов) о действиях в различных ситуациях или в процессе решения характерных задач. Выявлением подобных знаний и последующим их представлением в базе знаний занимаются специалисты, называемые инженерами знаний. Для ввода знаний в базу и их последующего обновления ЭС должна обладать механизмом приобретения знаний. В простейшем случае это - интеллектуальный редактор, который позволяет вводить единицы знаний в базу и проводить их синтаксический и семантический контроль, например, на непротиворечивость. В более сложных случаях извлекать знания следует с помощью специальных сценариев интервьюирования экспертов, которые приводятся ниже в гл.3, или из опыта работы самой интеллектуальной системы.







Дата добавления: 2015-10-19; просмотров: 1496. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия