Студопедия — Магнитотвердые материалы
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Магнитотвердые материалы






К магнитотвердым материалам относится магнитные материа­лы с широкой гистерезисной петлей и большой коэрцитивной си­лой Нс (рис. 6.3, г).

Основными характеристиками магнитотвердых материалов яв­ляются коэрцитивная сила Нс, остаточная индукция Вс, максималь­ная удельная магнитная энергия, отдаваемая во внешнее простран­ство ωmах.

Магнитная проницаемость μмагнитотвердых материалов зна­чительно меньше, чем у магнитомягких. Чем «тверже» магнитный материал, т. е. чем выше его коэрцитивная сила Нс, тем меньше его магнитная проницаемость.

Влияние температуры на величину остаточной магнитной индук­ции Вr, которая соответствует максимальному значению магнитной индукции для данного материала Втах, оценивается температурным коэффициентом остаточной магнитной индукции (К-1)

αв = ((Br)2 – (Br)1)/(Br)1(T2-T1) (67)

где (Br)1 и (Br)2 - значения остаточной индукции материала при температурах T1, и Т2соответственно.

Максимальная удельная магнитная энергия штах является важней­шим параметром при оценке качества магнитотвердых материалов. Максимальная удельная магнитная энергия, Дж/м2:

ωmax = (BH)max /2. (68)

Постоянный магнит при замкнутом магнитопроводе практичес­ки не отдает энергию во внешнее пространство, так как почти все магнитные силовые линии замыкаются внутри сердечника, и маг­нитное поле вне сердечника отсутствует. Для использования маг­нитной энергии постоянных магнитов в замкнутом магнитопрово­де создают воздушный зазор определенных размеров и конфигура­ции, магнитное поле в котором используют для технических целей.

Магнитный поток постоянного магнита с течением времени уменьшается. Это явление называется старением магнита. Старе­ние может быть обратимым и необратимым.

В случае обратимого старения при воздействии на постоянный магнит ударов, толчков, резких колебаний температуры, внешних постоянных полей происходит снижение его остаточной магнитной индукции Вr на 1...3%; при повторном намагничивании свойства таких магнитов восстанавливаются.

Если со временем в постоянном магните произошли структур­ные изменения, то повторное намагничивание не устраняет необра­тимого старения.

По назначению магнитотвердые материалы подразделяют на материалы для постоянных магнитов и материалы для записи и хра­нения информации (звуковой, цифровой, видеоинформации и др.).

По составу и способу получения магнитотвердые материалы подразделяют на литые, порошковые и прочие.

Литые материалы на основе сплавов. Эти материалы имеют ос­новой сплавы железо-никель-алюминий (Fe-Ni-Al) и железо-ни­кель-кобальт (Fe-Ni-Co) и являются основными материалами для изготовления постоянных магнитов. Эти сплавы относят к преци­зионным, так как их качество в решающей степени определяется строгим соблюдением технологических факторов.

Магнитотвердые литые материалы получают в результате дис­персионного твердения сплава при его охлаждении с определенной скоростью от температуры плавления до температуры начала рас­пада. В процессе твердения происходит высокотемпературный рас­пад твердого раствора на β - фазу и β2 - фазу. β - фаза близка по соста­ву к чистому железу, которое обладает сильно выраженными маг­нитными свойствами. Она выделяется в виде пластинок однодоменной толщины. β 2 - фаза близка по составу к интерметаллическому соединению никель-алюминий Ni-Al, обладающему низкими маг­нитными свойствами.

В результате получают систему, состоящую из немагнитной фазы β2 с однодоменными сильномагнитными включениями фазы β, ко­торая обладает большой коэрцитивной силой Нс. Такие сплавы не применяют из-за сравнительно низких магнитных свойств. Наибо­лее распространенными являются сплавы железо-никель-алюми­ний, легированные медью Сu и кобальтом Со.

Марки этих материалов содержат буквы Ю и Н, указывающие на наличие в них алюминия и никеля. При использовании легирующих металлов в обозначение марок вводят дополнительные буквы, кото­рые соответствуют этим металлам, например, сплав системы желе­зо-никель-алюминий, легированный кобальтом, марки ЮНДК.

Бескобальтовые сплавы обладают относительно низкими магнитными свойствами, но они являются самыми дешевыми.

Кобальтовые сплавы применяют для изготовления изделий, которые требуют материалов с относительно высокими магнитны­ми свойствами и магнитной изотропностью.

Высококобальтовые сплавы представляют собой спла­вы с магнитной или с магнитной и кристаллической текстурой, со­держащие кобальта более 15%.

Сплавы с магнитной текстурой получают в результате охлажде­ния сплава в магнитном поле с напряженностью 160...280 кА/м от высоких температур 1250...1300°С до температуры приблизитель­но 500 °С. Полученный сплав приобретает улучшенные магнитные характеристики лишь в направлении действия поля, т. е. материал становится магнитоанизотропным.

Для сплавов, содержащих 12% кобальта, термомагнитная обра­ботка увеличивает магнитную энергию приблизительно на 20%, а для сплавов, содержащих 20...25% кобальта, - на 80% и более.

Термомагнитная обработка повышает температуру начала дис­персного распада с 950 °С в сплаве без кобальта до 800 °С в сплаве, содержащем 24% кобальта.

В результате термомагнитной обработки у высококобальтовых сплавов повышается также температура точки Кюри с 730 до 850 °С.

Кристаллическую текстуру получают в процессе особых усло­вий охлаждения сплавов. В результате получают магниты с осо­бой макроструктурой в виде столбчатых кристаллов, ориентиро­ванных в направлении легкого намагничивания. Это повышает магнитные свойства сплавов. Магнитная энергия повышается на 60...70%. Увеличиваются коэрцитивная сила Нс, остаточная маг­нитная индукция Вr и коэффициент выпуклости кривой размагни­чивания материала:

γ = (BH)max / BrHc (69)

Высококобальтовые текстурированные сплавы применяют для изготовления малогабаритных магнитных изделий, требующих высоких магнитных свойств и магнитной анизотропии.

Недостатками высококобальтовых материалов являются высо­кая твердость и хрупкость, что значительно осложняет их механи­ческую обработку.

Порошковые магнитотвердые материалы (постоянные магниты ). Порошковые магнитотвердые материалы применяют для изготов­ления миниатюрных постоянных магнитов сложной формы. Их подразделяют на металлокерамические, металлопластические, ок­сидные и микропорошковые.

Прочие магнитотвердые материалы. К этой группе относятся материалы, которые имеют узкоспециальное применение: пласти­чески деформируемые сплавы, эластичные магниты, материалы для магнитных носителей информации, жидкие магниты.

 







Дата добавления: 2015-10-19; просмотров: 482. Нарушение авторских прав; Мы поможем в написании вашей работы!



Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия