Введение. 1. Общая теория статистики: учебник / под ред
1. Общая теория статистики: учебник / под ред. И.И. Елисеевой. - 5-е изд., перераб. и доп. - М.: Финансы и статистика, 2004. - 656 с. 2. Ефимова, М.Р. Общая теория статистики: учебник / М.Р. Ефимова, Е.В. Петрова, В.Н. Румянцев. - М.: ИНФРА-М, 2001. - 416 с. 3. Ефимова, М.Р. Практикум по общей теории статистики: учеб. пособие для_экон. спец. вузов / М.Р. Ефимова, О.И. Ганченко, Е.В. Петрова. - М.: Финансы и статистика, 2001. - 278 с. 4. Гусаров, В.М. Статистика: учеб. пособие / В.М. Гусаров. – М.: ЮНИТИ, 2002. – 463 с. 5. Октябрьский, П.Я. Статистика: учебник / П.Я. Октябрьский. – М.: Проспект, 2003. – 328 с. 6. Практикум по теории статистики: учеб. пособие / под ред. Р.А. Шмойловой. - М.: Финансы и статистика, 2003. - 416 с. 11 Статистика: учеб. пособие / под ред. В.Г. Ионина. – М.: ИНФРА-М, 2001. – 383 с. 12. Статистика: курс лекций / под ред. В.Г. Ионина. - М.: ИНФРА-М, 2000. - 310 с. 13..Статистика: учебник / И.И. Елисеева, И.И. Егорова и др.; под ред. проф. И.И. Елисеевой. - М.: Проспект, 2004. - 448 с. 14. Теория статистики: учебник/ под ред. Г.Л. Громыко. – М.: Инфра-М, 2005. – 476 с. 15. Теория статистики: Учебник / Р.А. Шмойлова, В.Г. Минашкин, Н.А. Садовникова, Е.Б. Шувалова; под ред. Р.А. Шмойловой. - 4-е изд., перераб. и доп. - М.: Финансы и статистика, 2004. - 656 с. 16. Усова, Р.А. Общая теория статистики: учеб. пособие/ Р.А. Усова. - Вологда: ВоПИ, 1998. - 87с. 17. Экономико-статистический анализ: учеб. пособие / под ред. С.Д. Ильенковой. - М.: ЮНИТИ-ДАНА,2002.-215с.
ЭЛЕКТРОННЫЕ, ИОННЫЕ И ПЛАЗМЕННЫЕ ТЕХНОЛОГИИ
Рекомендовано методической комиссией факультета «Машиностроительные технологии» МГТУ им.Н.Э.Баумана в качестве учебного пособия по курсу «Элионные технологии»
Москва МГТУ им.Н.Э.Баумана Факультет «Машиностроительные технологии»
Часть I. ОСНОВЫ ЭЛИОННЫХ ТЕХНОЛОГИЙ Области применения, в т.ч. нанотехнологии. Основы технологии: типовой маршрут (подготовка поверхности, нанесение слоев, литография, травление, имплантация, термообработка, контроль параметров и т.д.); обрабатываемые материалы; методы нанесения тонких пленок в вакууме, вакуумно-плазменного травления, ионной имплантации; расчет режимов нанесения тонких пленок в вакууме, вакуумно-плазменного травления, ионной имплантации.
1. Введение 2. Общие положения 3. Формирование потоков частиц 4. Вакуумное осаждение тонких пленок 5. Вакуумно-плазменное травление 6. Ионно-лучевая обработка и ионная имплантация 7. Измерения и контроль в вакууме 8. Заключение. Перспективы элионных технологий
Введение Электронные технологии – это процессы обработки материалов высокоэнергетическими потоками частиц (электроны, ионы, молекулы), газоразрядной плазмой и излучениями (оптическое, гамма, рентгеновское). Применяют также наименования «электронно-ионно-плазменные», «элионные» технологии, однако «электронные» получило распространение как наиболее простое. Расширительно к электронным технологиям относят ряд нетрадиционных процессов, возникших и отработанных первично в электронной промышленности. Среди них наиважнейший – вакуумирование, получение разреженной среды (вакуума) в замкнутых объемах, в которых проводятся различные технологические операции. В конце ХХ века насыщение потребительского рынка, обострение конкурентной борьбы во всех сферах производства и сбыта, опережающее развитие таких направлений, как электроника, авиация и космонавтика поставили невиданные ранее требования к качеству промышленных изделий и способам их производства. В категорию качества сейчас входит не только точность форм и размеров деталей, бесшумность и безотказность машин и приборов, но и экологическая безопасность технологий, комфортность обслуживания технологического оборудования. Понадобились сверхчистые конструкционные материалы и методы их контроля, технологические воздействия в микронных зонах и с микронным диапазоном точности, чему традиционные технологии машиностроения и приборостроения удовлетворять не в состоянии. Столетиями в сфере производства при получении конструкционных материалов и их обработке не подвергалось сомнению господство двух технологических сред – атмосферной и жидкостной. Однако, сверхчистые материалы не могут быть получены в атмосфере из-за растворения загрязняющих газов в объеме и на поверхности. Их химический состав и свойства поверхности не могут быть должным образом оценены из-за поверхностной адсорбции паров и газов. Традиционные инструменты формообразования и размерной обработки резанием и пластическим деформированием имеют прочностные пределы миниатюризации и обеспечить микрообработку не в состоянии. А потоки электронов и ионов, поддающиеся необходимой фокусировке в атмосфере функционировать не могут. Нанесение гальванических покрытий и иные технологические методы формирования защитных свойств поверхностного слоя были возможны лишь в токсичных жидких или высокотемпературных паровоздушных средах с экологически опасными стоками и выбросами. Коренной перелом в решении проблем качества стал возможным благодаря новой технологической среде – вакууму, куда в настоящее время «уходят» многие «традиционные» технологические процессы. Плавка в вакууме позволяет получать особо чистые металлы, без раковин и загрязнений. Сварка в вакууме избавляет от коррозионной хрупкости сварные швы и точки соединения. Вакуумная упаковка продуктов позволяет длительно сохранять все необходимые свойства, сушка в вакууме взамен высокотемпературной атмосферной не приводит к разложению веществ и образованию токсичных выбросов. Вакуумная техника и электронные технологии дали путевку в жизнь многим принципиально новым процессам. Прежде всего, это экологически чистое безотходное нанесение тонкопленочных покрытий – защитных, упрочняющих, антифрикционных, декоративных. Это легирование путем имплантации в поверхность металла ионов необходимых элементов взамен высокотемпературного насыщения. Это электронно-лучевая размерная микрообработка – получение отверстий, пазов, микронагрев и др. Это «сухое травление» ионными потоками или газоразрядной плазмой с микронным съемом материала по поверхности. Это микролитография – получение на плоскости тонкопленочных структур с микронным и субмикронным уровнем разрешения. Это высочайшей точности контроль в вакууме с помощью потоков частиц размеров микроструктур, химического состава и физических свойств поверхности материалов. Электронные технологии, рожденные первоначально в электронной промышленности, в настоящее время стремительно развиваются и находят применение в ядерной энергетике и космонавтике, электротехнике, машиностроении и приборостроении, строительстве, медицине, при производстве бытовых и художественных изделий.
Общие положения Электронные технологии в машиностроении – это технологии воздействия потоков частиц в вакууме на конструкционные материалы. Характер воздействия зависит от типа частиц (электроны, ионы, атомы, молекулы), от их энергии и химической активности, а также от материала твердого тела (металлы, полупроводники, диэлектрики и т.п.). Энергия воздействия определяется массой частиц m и скоростью их движения V (E=mV2/2), электрическим зарядом q и ускоряющим напряжением U (E=qU), а также температурой частиц T (E=kT, где k – постоянная Больцмана). В зависимости от энергии и плотности потока частиц возможны следующие эффекты взаимодействия и их практические приложения (Табл.1). Уникальность этих технологий заключается в “работе” с отдельными атомами и молекулами обрабатываемых материалов, что приводит к высочайшей дискретности и точности обработки, причем как локальной, так и по всей поверхности детали. Широк и диапазон энергий атомных частиц (от нескольких электронвольт до нескольких ГэВ на частицу) и длительностей воздействия (от 10-16 с до непрерывной обработки). Эти технологии обладают огромными плотностями мощности пучков (до 1012 - 1014 Вт/см2), возможности дозированного легирования поверхностных слоев готовых изделий (повышение в десятки и сотни раз эксплуатационных характеристик деталей и узлов) и непрерывного контроля за состоянием, химическим составом и геометрическими размерами непосредственно в ходе проведения технологической операции, а также из-за возможности быстрой оптимизации параметров и полной автоматизации технологического процесса. Пример: E=qezU=kT=mV2/2 (z – кратность ионизации) E = qezU = 1 эВ = 1,6.10-19 Кл . 1 В = 1,6.10-19 Дж (А.с.В) Вт = Дж/с E = kT = 1,38.10-23 Дж/К . 1000 К = 1,38.10-20 Дж / 1,6.10-19 Кл = 0,086 эВ. 293 К = 4.10-21 Дж = 0,04 эВ Т=106 К -> E = kT = 1,38.10-23 Дж/К . 106 К = 1,38.10-17 Дж = 86 эВ -> U = 86 В. E = mV2/2 = 9,1.10-31 кг . V2/2 -> V = Ѵ(2.10-20 Дж/9,1.10-31 кг) = 1,4.105 м/с U = 106 В -> E = 1,6.10-17 Дж -> V = Ѵ(2.1,6.10-17 Дж/9,1.10-31 кг) = 6.106 м/с -> при приближении к скорости света (108 м/с) начинает увеличиваться масса частицы.
|