Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Матричная форма записи уравнений установившегося режима





 

 

Уравнения установившегося режима в форме баланса токов:

, (1)

где - напряжение в рассматриваемом i – м узле и напряжения в смежных узлах j. Это неизвестные величины;

yij – взаимная проводимость узлов

;

yij собственная проводимость i – го узла

(2)

 

уі0

 

 

- поперечная проводимость участков подходящих к i – у узлу:

(3)

 
 


Поперечные проводимости транс- Поперечная проводимость

формирующих участков линии

 

yi0 собственная проводимость устройств, подключенных непосредст-венно в i – м узле;

- заданные мощность или ток.

Уравнение (1) сформировано на основе метода узловых потенциалов, за-писано для одного і – го узла сети. Для схемы, состоящий из n узлов записы-вается n таких уравнений с n комплексными неизвестными.

 

Запишем систему уравнений вида (1) для абстрактной схемы электрической сети, состоящей из n узлов:

 

(4)

 

 

Эта система уравнений описывает режим роботы ЭС в целом. Запишем эту систему в матричной форме:

 

(5)

 


С учетом обозначений система (5) примет вид:

. (6)

 

Здесь Y – матрица коэффициентов при неизвестных – матрица собственных

и взаимных проводимостей (матрица проводимостей);

- вектор неизвестных – вектор напряжений;

D – диагональная матрица, на главной диагонали которой расположены

величины, обратные сопряженному комплексу напряжений в узлах.

Остальные элементы матрицы - нули;

- вектор сопряженных комплексов заданных мощностей в узлах;

- вектор заданных токов в узлах.

 

Матрица собственных и взаимных проводимостей Y

Ее элементами являются проводимости узлов и участков. На главной диа-гонали расположены собственные проводимости узлов, определяемые по фор-муле (2). Вне главной диагонали - взаимные проводимости узлов, взятые с об-ратным знаком. Матрица квадратная, симметричная.

Если узлы сети соединены между собой, то их взаимная проводимость отлична от нуля (Yij = 1/Zij). Если узлы между собой не связаны, то Yij = 0.

Т.к. реальные сети имеют большое количество узлов, а каждый узел имеет не-большое число связей с другими узлами (до 10), то строки матрицы и матрица в целом содержат большое количество нулевых элементов (матрица слабоза-полненная или разреженная).

Каждая строка матрицы соответствует одному узлу сети и его связям.

По структуре матрицы проводимостей можно определить схему сети и ее параметры. То есть матрица проводимостей представляет собой модель схемы электрической сети.

 

Пример: Дана матрица проводимостей. По её структуре определим схему

сети:

  1 2 3 4 5
1 x   x x  
2   x   x  
3 x   x    
4 x x   x x
5       x x

 

 

 
 
 


 

 

Уравнения (5) и (6) представляют собой математическую модель режи-ма работы ЭС в общем виде.

 

 







Дата добавления: 2015-10-19; просмотров: 482. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия