Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Энергообеспечение динамической работы при подтягивании в оптимальном соревновательном темпе





При подтягивании в оптимальном соревновательном темпе первое подтягивание выполняется за счёт имеющихся в мышцах запасов АТФ. При этом концентрация АТФ понижается, а концентрация АДФ (которая появляется вследствие гидролиза АТФ при мышечном сокращении) увеличивается, что вызывает включение анаэробного креатинфосфатного механизма ресинтеза АТФ, который в последующие 15-20 секунд является ведущим механизмом энергообеспечения. В процессе работы происходит непрерывное уменьшение концентрации креатинфосфата, а поскольку его запасы в мышцах невелики, для поддержания процесса ресинтеза АТФ в работу включается гликолиз, в ходе которого происходит анаэробное окисление глюкозы до молочной кислоты. К факторам, способствующим запуску гликолиза, относят активизацию ферментов гликолиза адреналином и многократное увеличение концентрации ионов кальция в саркоплазме мышечных клеток под воздействием двигательного нервного импульса в начале интенсивной работы.

Примерно с середины первой и до середины второй минуты гликолиз является преимущественным механизмом ресинтеза АТФ. Протекание гликолиза с высокой скоростью (для обеспечения работы в энергоёмкой фазе подъёма туловища) сопровождается уменьшением в мышцах концентрации гликогена, который является «топливом» для гликолитических реакций. Кроме того, - и это, пожалуй, имеет первостепенное значение для подтягиваний – в процессе гликолиза образуется молочная кислота, накопление которой приводит к повышению кислотности внутри мышечных клеток и вызывает снижение каталитической активности ферментов того же гликолиза и уменьшение скорости энергопродукции этого пути ресинтеза АТФ. Для предотвращения данного негативного явления спортсмен при первых признаках «задубения» мышц снижает темп выполнения подтягиваний за счёт увеличения пауз отдыха в висе и подтягивается в пониженном темпе до тех пор, пока мышцы не «отпустит», что будет свидетельствовать о снижении уровня лактата до безопасной величины.

Подтягивание в темпе, при котором с одной стороны обеспечиваются потребности в АТФ в фазах подъёма/опускания и с другой стороны не происходит увеличения уровня молочной кислоты до опасной черты, продолжаются до тех пор, пока не разворачивается самый медленный (но в то же время и самый экономичный) механизм энергообеспечения – аэробный механизм ресинтеза АТФ.

Активация механизма аэробного окисления осуществляется вследствие образования и накопления АДФ, а также вследствие избытка углекислого газа, который активизирует дыхательный центр мозга, что в итоге приводит к повышению скорости кровотока и улучшению снабжения мышц кислородом. Поскольку для обеспечения максимальной скорости тканевого дыхания необходима перестройка всех систем организма, участвующих в доставке кислорода к митохондриям мышц, время развёртывания механизма аэробного окисления достаточно велико, поэтому о его сокращении нужно позаботиться заранее, проведя соответствующую разминку. Но даже после выхода механизма аэробного ресинтеза АТФ на максимальную мощность, суммарная энергопродукция в ходе выполнения подтягиваний уменьшается, поэтому даже при сохранении длительности фазы подъёма в оптимальных пределах, спортсмен вынужден увеличивать паузу отдыха, чтобы успеть выработать необходимое количество АТФ. Для сравнения можно привести следующие данные [11]: максимальная мощность энергопродукции креатинфосфатного механизма составляет 900-1100 кал/мин/кг, гликолитического – 750-850 кал/мин/кг, а аэробного – всего 350-450 кал/мин/кг, т.е. примерно в 3 раза ниже, чем у креатинфосфатного и в 2 раза ниже, чем у гликолитического механизма энергопродукции.

Кроме того, интенсивность дыхания в процессе подтягиваний возрастает, поэтому увеличение паузы отдыха также связано ещё и с необходимостью согласования циклов подтягиваний с циклами дыхания. Хотя нужно отметить, что хорошо тренированные спортсмены способны выполнять подтягивания не более чем на 2 цикла дыхания практически до конца упражнения. Если же уровень подготовки спортсмена недостаточно высок, его мышцы неспособны утилизировать кислород, несмотря на непрерывное увеличение интенсивности дыхания.

Выполняя подтягивания в темпе, соответствующем аэробным возможностям мышц, спортсмен может позволить себе в середине четвёртой минуты начать финишное ускорение, увеличив темп выполнения подтягиваний за счёт сокращения интервалов отдыха в висе. При этом резко возрастает кислородный запрос, активизируется гликолиз и выделяется лактат, но спортсмен уже не обращает на это внимания, выполняя подтягивания в максимально возможном на тот момент темпе. Если к моменту финишного рывка в мышцах спортсмена осталось достаточное количество креатинфосфата, он не будет испытывать затруднений в верхней части траектории движения и закончит упражнение по истечении отведённого времени (при этом ему может потребоваться несколько минут, чтобы отдышаться после окончания упражнения). В противном случае дисбаланс между расходом энергии вследствие увеличения интенсивности работы и её приходом от гликолиза и аэробного окисления быстро приводит к снижению концентрации креатинфосфата, уменьшению уровня АТФ в миофибриллах мышечных волокон и, как следствие, к «зависанию» в верхней части траектории движения и преждевременному окончанию упражнения.

 







Дата добавления: 2015-10-19; просмотров: 506. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия