Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Тест "Социальный интеллект" Гилфорда/Бланк ответов. Оценка качества модели является завершающим этапом ее разработки и пре­следует две цели:





Оценка качества модели является завершающим этапом ее разработки и пре­следует две цели:

1) проверить соответствие модели ее предназначению (целям исследования);

2) оценить достоверность и статистические характеристики результатов, полу­чаемых при проведении модельных экспериментов.

При аналитическом моделировании достоверность результатов определяется двумя основными факторами:

1) корректным выбором математического аппарата, используемого для описа­ния исследуемой системы;

2) методической ошибкой, присущей данному математическому методу.

При имитационном моделировании на достоверность результатов влияет целый ряд дополнительных факторов, основными из которых являются:

• моделирование случайных факторов, основанное на использовании датчиков СЧ, которые могут вносить «искажения» в поведение модели;

• наличие нестационарного режима работы модели;

• использование нескольких разнотипных математических методов в рамках одной модели;

• зависимость результатов моделирования от плана эксперимента;

• необходимость синхронизации работы отдельных компонентов модели;

• наличие модели рабочей нагрузки, качество которой зависит, в свою очередь, от тех же факторов.

Пригодность имитационной модели для решения задач исследования характе­ризуется тем, в какой степени она обладает так называемыми целевыми свойства­ми. Основными из них являются:

• адекватность;

• устойчивость;

• чувствительность.

Оценка адекватности модели. В общем случае под адекватностью понимают степень соответствия модели тому реальному явлению или объекту, для описания которого она строится. Адекватность модели определяется степенью ее соответствия не столько реально­му объекту, сколько целям исследования.

Один из способов обоснования адекватности разработанной модели - использование методов математической статистики. Суть этих методов заключается в проверке выдвинутой гипотезы (в данном случае - об адекватности модели) на основе некоторых статистических критериев.

Процедура оценки основана на сравнении измерений на реальной системе и результатов экспериментов на модели и может проводиться различными способа­ми. Наиболее распространенные из них:

• по средним значениям откликов модели и системы;

• по дисперсиям отклонений откликов модели от среднего значения откликов системы;

• по максимальному значению относительных отклонений откликов модели от откликов системы.

Оценка устойчивости модели. Устойчивость модели - это ее способность сохранять адекватность при иссле­довании эффективности системы на всем возможном диапазоне рабочей нагрузки, а также при внесении изменений в конфигурацию системы. Разработчик вынужден прибегать к методам «для данного случая», частичным тестам и здравому смыслу. Часто бывает по­лезна апостериорная проверка. Она состоит в сравнении результатов моделирования и результатов измерений на системе после внесения в нее изменений. Если результаты моделирования приемлемы, уверенность в устойчивости модели возрастает.

Чем ближе структура модели структуре системы и чем выше степень детализации, тем устойчивее модель. Устойчивость результатов моделирования может быть также оценена методами математической статистики.

Оценка чувствительности модели. Достаточно часто возникает задача оценивания чувствительности модели к изменению пара­метров рабочей нагрузки и внутренних параметров самой системы.

Такую оценку проводят по каждому параметру в отдельности. Основана она на том, что обычно диапазон возможных изменений параметра известен. Одна из наиболее простых и распространенных процедур оценивания состоит в следующем.

1) вычисляется величина относительного среднего приращения параметра :

2) проводится пара модельных экспериментов при значениях , и средних фиксированных значениях остальных параметров. Определяются значения отклика модели и ;

3) вычисляются ее относительное приращение наблюдаемой переменной :

В результате для -го параметра модели имеют пару значений , характеризующую чувствительность модели по этому параметру.

Аналогично формируются пары для остальных параметров модели, которые образуют множество .

Данные, полученные при оценке чувствительности модели, могут быть ис­пользованы, в частности, при планировании экспериментов: большее внима­ние должно уделяться тем параметрам, по которым модель является более чув­ствительной.

Калибровка модели. Если в результате проведенной оценки качества модели оказалось, что ее целевые свойства не удовлетворяют разработчика, необходимо выполнить ее калибровку, т. е. коррекцию с целью приведения в соответствие предъявляемым требованиям.

Как правило, процесс калибровки носит итеративный характер и состоит из трех основных этапов:

1) глобальные изменения модели (например, введение новых процессов, изме­нение типов событий и т. д.);

2) локальные изменения (в частности, изменение некоторых законов распреде­ления моделируемых случайных величин);

3) изменение специальных параметров, называемых калибровочными.

Целесообразно объединить оценку целевых свойств имитационной модели и ее калибров­ку в единый процесс.

Процедура калибровки состоит из трех шагов, каждый из которых является ите­ративным (рис. 1.11).

Шаг 1. Сравнение выходных распределений.

Цель — оценка адекватности ИМ. Критерии сравнения могут быть различны. В частности, может использоваться величина разности между средними значениями откликов модели и системы. Устранение различий на этом шаге основано на внесении глобальных изменений.

Шаг 2. Балансировка модели.

Основная задача — оценка устойчивости и чувствительности модели. По его резуль­татам, как правило, производятся локальные изменения (но возможны и глобальные).

Шаг 3. Оптимизация модели.

Цель этого этапа — обеспечение требуемой точности результатов. Здесь возмож­ны три основных направления работ: дополнительная проверка качества датчиков случайных чисел; снижение влияния переходного режима; применение специальных методов понижения дисперсии.

 

 

Тест "Социальный интеллект" Гилфорда/Бланк ответов







Дата добавления: 2015-10-19; просмотров: 2217. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия