Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вычисление определённых интегралов


Вычисление определённых интегралов

Для вычисления значений определённых интегралов существует множество методов. Рассмотрим три из них – метод прямоугольников, метод трапеций и метод парабол (метод Симпсона) на примерах при следующей постановке задачи. Составить фрагмент программы для вычисления приближенного значения определённого интеграла

при заданных подынтегральной функции f(x), пределах интегрирования a и b и числе N разбиений интервала на подынтервалы. При этом шаг изменения аргумента Δx следует найти по формуле Δx=(b-a)/N.

Суть этих методов – в накоплении, с учетом знаков, сумм площадей прямоугольников, трапеций или параболических трапеций, заменяющих на каждом подынтервале в общем случае криволинейную трапецию. Для метода прямоугольников высоты таких прямоугольников следует вычислять как значение функции в серединах (или на границах) подынтервалов, для метода трапеций высоты сторон трапеций – как значения функции на границах подынтервала, а для метода Симпсона используются значения функций и на границах и в серединах подынтервалов. Соответствующие формулы в общем виде и фрагменты программ вычисления интегралов для подынтегральной функции sin x приведены в рассмотренных ниже примерах.

Пример 1. Использование метода прямоугольников с вычислением высот прямоугольников в серединах подынтервалов.

В этом методе формула приближенного значения определённого интеграла представляется в виде

Для уменьшения объёма вычислений множитель Δx следует вынести за знак суммы:

, а для вычисления текущих значений центров xi подынтервалов будем использовать приём накопления суммы.

 

z:=0;

dx:=(b-a)/N;

x:=a+dx/2;//Середина первого подынтервала

for i:=1 to N do

begin

z:=z+Sin(x);

x:=x+dx

end;

z:=z*dx;

 

Пример 2. Использование метода трапеций.

В этом методе формула приближенного значения определённого интеграла представляется в виде

Преобразование её к виду

 

позволяет исключить повторные вычисления высот трапеций на внутренних подынтервалах и таким образом сократить объём вычислений.

 

z:=(Sin(a)+Sin(b))/2;

dx:=(b-a)/N;

x:=a+dx;

for i:=1 to N-1 do

begin

z:=z+Sin(x);

x:=x+dx

end;

z:=z*dx;

 

Пример 3. Использование метода параболических трапеций (Симпсона).

В этом методе формула приближенного значения определённого интеграла представляется в виде

или, взяв N в 2 раза большим, то есть разбив весь интервал на четное количество участков, в 2 раза меньшей длины

.

Используем вторую формулу в следующем фрагменте программы.

 

ReadLn(a,b,N);

Integ:=Sin(a);

dx:=(b-a)/N;

for i:=1 to N div 2 do

begin

x:=a+2*i*dx;

Integ:=Integ+2*Sin(x)+4*Sin(x-dx);

end;

Integ:=(Integ-Sin(b))*dx/3;

WriteLn(Integ:10:5);

Itoch:=-(Cos(b)-Cos(a));

WriteLn(Itoch:10:5);

ReadLn;

 




<== предыдущая лекция | следующая лекция ==>
 | 

Дата добавления: 2015-10-19; просмотров: 405. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия