Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Формирование электронной таблицы





1.5.1. Установка ширины столбцов ячеек

Формирование состава электронной таблицы начинается с установления требуемой ширины колонок электронной таблицы. Это рекомендуется выполнять с помощью мыши. Для этого в заголовке столбцов перемещается граница столбцов на нужное расстояние, указав границу левой кнопкой и удерживая ее до достижения нужного размера столбца.


1.5.2. Запись исходных данных

Затем необходимо разместить в ячейках таблицы исходные данные. Для ввода текстового комментария или численного значения в рабочей области следует навести курсор на выбранную ячейку, затем набрать текст или численное значение и ввести его нажатием <Enter>. В отличие от языков программирования при вводе десятичных чисел дробная часть отделяется от целой символом запятой. По умолчанию численные константы выравниваются по правому краю ячейки, а строковые – по левому. В ячейке будет отображаться заданные значения. Если нужно скорректировать содержимое ячейки, то следует установить на нее курсор и нажать клавишу <F2> (или можно выполнить двойной клик левой кнопкой мыши), при этом в поле имени будет указан адрес ячейки, а в строке формул – содержащиеся в ней данные. Редактирование содержимого ячейки производится в строке формул или в самой ячейке.

Рисунок 1.4 – Пример задания исходных данных

1.5.3. Расчет шага изменения аргумента

Для формирования таблицы понадобится предварительно определить значение шага изменения аргумента. Для этого выделяется отдельная ячейка. Сначала в соседнюю слева от нее ячейку записывается текст комментария. Затем наводится курсор на выделенную ячейку и набирается формула определения шага, которая должна начинаться со знака равенства (=). Шаг определяется по формуле

Шаг = (Xконечное - Xначальное) / число точек таблицы

При записи формулы вместо имен переменных указываются адреса ячеек, где хранятся нужные при расчете данные. Адрес ячейки обозначается с помощью латинских букв ее номера столбца и цифр номера строки. Для рассматриваемого примера в ячейке B8 формула расчета шага имеет вид = (B7 – B6)/30.

После введения формулы в ячейке автоматически выполняется расчет и отображение результата. При наведение курсора на ячейку, хранящую формулу, в строке формул отображается записываемое выражение.

Рисунок 1.5 – Реализация расчета шага изменения аргумента

1.5.4. Формирование таблицы результатов расчета

Сначала формируется текст заголовка таблицы. В первом столбце отображаются возрастающие значения аргумента, а во втором – соответствующее ему значение функции. Первое значение аргумента задается с помощью записи формулы в виде адреса ячейки, хранящего начальное значение аргумента Xn. В примере содержимое ячейки А11 имеет вид формулы =B6

В ячейке для расчета значения функции, которая находится справа от ячейки со значением аргумента, записывается с учетом синтаксиса стандартных функций расчетная формула, содержащая вместо имен переменных их адреса. Синтаксис функций Excel описан в пункте 2. Пример простой расчетной формулы для ячейки B11

=B2*A11^3+B3*КОРЕНЬ(ABS(A11-B4))+B5

Все адреса ячеек, указанные в формуле являются относительными. Это означает, что если значение ячейки скопировать в другую ячейку, то в ней указанные адреса изменятся на число строк и столбцов, соответствующее разности их адресов. А так как впоследствии следует заполнить еще 29 строк с аналогичной формулой, в которой все адреса ячеек исходных, кроме адреса аргумента, должны быть неизменными, то желательно перевести сразу все неизменные относительные адреса в абсолютные, которые не изменяются при копировании формулы.

Абсолютный адрес записывается с символом доллара перед именем столбца номером сроки в виде: $<имя столбца>$<номер строки>. Чтобы изменить адресацию с относительной на абсолютную во введенной формуле, следует перейти в режим редактирования ячейки формулы (нажав <F2>) и добавить символ $ в адреса исходных данных, оставив неизменным относительным адрес аргумента. Абсолютный адрес в формуле можно выставить при редактировании формулы сразу, наведя курсор в строке формулы на нужный адрес и нажав клавишу <F4>.

Рисунок 1.6 – Вид формулы расчета функции в среде Excel

В следующей нижней строке значение аргумента в таблице определяется по формуле как сумма относительного адреса верхней ячейки с абсолютным адресом, хранящим шаг изменения. Для ячейки A12 эта формула имеет вид:

=A11+$B$8

Для формулы ячейки B11 выражение примет вид

=$B$2*A11^3+$B$3*КОРЕНЬ(ABS(A11-$B$4))+$B$5

Далее следует, чтобы не набирать заново формулу расчета функции скопировать ее из верхней строки. Для этого наводится курсор на верхнюю ячейку с формулой и копируется ее содержимое в буфер нажатием клавиш <Ctrl>+<C>. После этого вокруг скопированной ячейки появляется выделение из бегающих точек. Далее курсор переводится на ячейку, куда будет скопирована формула, и вставляется содержимое буфера нажатием клавиш <Ctrl>+<V>. При этом в формуле абсолютные адреса ячеек останутся без изменения, а изменится лишь адрес текущего аргумента на единицу.

Чтобы автоматически заполнить остальные 28 строк таблицы, следует выделить полностью вторую строку таблицы результатов. Для этого подводится курсор в начало строки и нажимается клавиша <Shift> и удерживается, а курсор перемещается клавиатурой к концу выделяемого блока. После того как нужный блок будет выделен темным фоном, клавиша <Shift> отпускается. Выделить блок можно и с помощью мыши.

Рисунок 1.7 – Таблица результатов расчетов

 

Для того, чтобы увидеть расчетную таблицу в виде формул, а не в виде значений необходимо открыть окно Параметры Excel (кнопка Office) и установить соответствующий флажок:

1.5.5. Оформление результатов расчетов

В полученной таблице результатов расчетов устанавливается видимой внешняя и внутренняя границы (устанавливается обрамление). Для этого выделяются в виде блока все ячейки таблицы и, используя меню Главная/Число или Формат я чеек в контекстном меню (по правой кнопке мыши), раскрывается окно диалога вида

Рисунок 1.8 – Окно настроек формата ячеек таблицы

С помощью закладок окна устанавливаются тип данных ячеек, выравнивание и шрифт отображаемого текста в ячейке, а также вид обрамления и границ вокруг ячеек.

Часть функций можно выполнить с помощью полей ввода и кнопок на строке форматирования окна Microsoft Excel или нажав соответствующие комбинации горячих клавиш. Назначение элементов на строке форматирования отображается во всплывающих подсказках при наведении курсора мыши на интересующий визуальный элемент.

1.5.6. Оформление листа таблицы для анализа данных

Для анализа данных таблицы необходимо перейти на второй лист и сформировать таблицу анализа рассчитанной функции.

На втором листе должна отображаться текущая дата расчетов, которая выдается функцией СЕГОДНЯ.

По значениям функции из первого листа при анализе данных таблицы функции необходимо определить максимальное и минимальное значение функции(с помощью функций МАКС и МИН), а также среднее значение и среднее отклонение значений функции в таблице (используя СРЗНАЧ и СРОТКЛ), и общую сумму элементов таблицы (с помощью функции СУММ). При этом используются функции из таблицы 2.1. В адресах ячеек таблицы необходимо указывать наименование первого листа.

Таблица 2.1.

Анализ результатов расчета функции
Дата расчета =СЕГОДНЯ()
Максимум функции = =МАКС(Лист1!B11:Лист1!B41)
Минимум функции = =МИН(Лист1!B11:Лист1!B41)
Среднее значение =СРЗНАЧ(Лист1!B11:Лист1!B41)
Среднее отклонение =СРОТКЛ(Лист1!B11:Лист1!B41)
Сумма функций =СУММ(Лист1!B11:Лист1!B41)

Результаты анализа оформляются в виде таблицы. Для листа задаются параметры страницы аналогичные предыдущему листу с данными.







Дата добавления: 2015-10-19; просмотров: 529. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Studopedia.info - Студопедия - 2014-2024 год . (0.007 сек.) русская версия | украинская версия