Перечислите основные требования, предъявляемые к качеству воды.
К качеству воды, подаваемой для питьевых нужд населения, предъявляют высокие санитарные требования. Качество воды природных источников характеризуется ее физическими свойствами, химическим составом и бактериальными загрязнениями. Не всякую природную воду можно употреблять не только в быту, но и на производстве. О пригодности воды судят по следующим качествам: прозрачность и цветность, привкусы и запахи, общее количество растворенных солей, щелочность и жесткость, активная реакция, окисляемость и бактериологическая загрязненность. В настоящее время действует ГОСТ 2874-54, в котором приведены требования к качеству воды, используемой для питья, а также для предприятий пищевой промышленности. ГОСТом указываются допускаемые пределы ухудшения физических свойств воды и содержание в ней химических соединений.
17. По каким показателям оценивают физические, химические и бактериологические свойства воды предназначенной для питьевых целей? Свойства воды природных источников изучают путем анализа проб воды, при помощи которых определяют наличие в ней различных веществ неорганического и органического происхождения, взвешенных коллоидных, растворенных и микроорганизмов. Физические свойства воды характеризуются ее температурой, мутностью (или прозрачностью), количественным и качественным содержанием взвешенных веществ, цветностью, вкусом и запахом Температура поверхностной воды колеблется в пределах от О до 28—30е. Грунтовые воды имеют на глубине более 10 м постоянную температуру 4—8°. Прозрачность воды измеряют в стеклянном цилиндре, на котором нанесена шкала измерений в сантиметрах. При этом определяют толщину слоя воды, через который можно прочитать текст, отпечатанный типографским шрифтом (Снеллена), или рассмотреть нанесенный черной краской на белой пластинке знак в виде двух крестообразно расположенных линий толщиной 1 мм (крест). Прозрачность воды различают по шрифту. Прозрачной считается вода в том случае, когда специальный стандартный шрифт, помещенный в воду, читается на расстоянии не менее 30 см. Прозрачность определяют и «по кресту». При этом расстояние до креста по вертикали должно быть не менее 250—300 см. Мутность воды характеризуется содержанием в ней взвешенных веществ, степенью их дисперсности, а также веществ в коллоидном состоянии и измеряется в мг/л. Количественное содержание взвешенных веществ в воде определяется фильтрованием пробы воды через фильтры. Метод определения описан в ГОСТ 3351—46. Мутность речной воды меняется в течение года и сильно повышается в период дождей и паводков. Мутность осветленной воды должна быть не более 2 мг/л. Цветностью воды называют окраску (обычно желтоватую), которую может иметь природная вода (главным образом болотного происхождения) при наличии гуминовых веществ; цветность измеряют в градусах путем сравнения исследуемой воды с эталонами цветности. Цветность воды не должна превышать 20°. Вода в природных источниках может иметь различный вкус, (привкус) и запах. Так, по вкусу вода может быть горьковатой, соленой, кислой, сладковатой, по запаху — травянистой, землистой, затхлой, болотной, рыбной. Запахи и привкусы воды оцениваются баллами; при температуре воды 20° наличие привкусов в ней не должно превышать 2 балла. Химический состав природной воды бывает весьма разнообразным. Пригодность воды для хозяйственно-питьевого водоснабжения определяют следующие данные: активная реакция, жесткость воды, содержание в ней свинца, мышьяка, фтора, меди, цинка, железа. Активная реакция (рН) воды показывает степень щелочности или кислотности воды и характеризуется концентрацией водородных ионов рН, обозначающих отрицательный логарифм концентрации ионов водорода, выраженный в г-ион/л. При нейтральной реакции воды рН = 7, что означает Ю-7 г водородных ионов в 1 л воды, при кислой рН < 7 и при щелочной рН > 7. В случае осветления или умягчения воды активная реакция должна быть не менее 6,5 и не более 9,5 рН. Жесткость воды определяют содержанием в ней растворенных солей кальция и магния и измеряют ее в миллиграмм-эквивалентах на 1 л. Для получения значения жесткости количество вещества (мг/л), характеризующего жесткость, должно быть разделено на его эквивалентный вес. В ряде зарубежных стран жесткость воды измеряют в немецких градусах (°Н). На жесткости выражает содержание в 1 л воды 10 мг СаО или 7,19 мг MgO. Жесткость, выраженную в немецких градусах, для перевода в мг.экв/л делят на 2,80 (1 мг.экв/л равен 2,8° Н, а 1°Н равен 0,356 мг.экв/л). Жесткость, обусловленную наличием в воде двууглекислых солей кальция и магния, называют карбонатной или временной жесткостью, а обусловленную всеми остальными солями (хлориды, сульфаты, нитраты, кальция и магния) — некарбонатной или постоянной. Суммарную жесткость воды называют общей жесткостью. Недопустимо высокое содержание в воде кислорода (02), углекислоты (С02) и сероводорода (С03), так как они способствуют коррозии металлических и бетонных труб; вода с содержанием сероводорода не пригодна для питьевых и производственных нужд. Бактериальная загрязненность воды зависит от количества вносимых в источник загрязнений со сточными водами, со стекающими дождевыми водами, от водопоя скота, от использования водоема для купания и спортивных целей и т. д. Бактериальная загрязненность воды измеряется числом бактерий, содержащихся в 1 см3 воды. Для здоровья опасны бактерии, являющиеся возбудителями инфекций и вызывающие желудочно-кишечные заболевания: брюшной тиф, паратиф, дизентерию, холеру. Такие бактерии называют патогенными. О качестве воды в санитарно-эпидемиологическом отношении судят по присутствию в воде бактерий, называемых кишечной палочкой. Наличие в воде кишечных палочек указывает на загрязнение воды фекальными водами. Поэтому в стандарты качества питьевой воды во всем мире введен критерий кишечной палочки как надежный показатель бактериальной чистоты. Наименьший объем воды в еж3, в котором обнаруживается присутствие кишечной палочки, называется коли-титром, а количество кишечных палочек в 1 л воды — коли-индексом. Для перевода коли-титра в коли-индекс нужно 1000 разделить на величину коли-индекса. Кроме кишечной палочки, характеристикой бактериальной загрязненности воды является общее число бактерий в воде. В питьевой воде в 1 мл число бактерий не должно превышать 100. На основании анализов воды в зависимости от целевого назначения водопровода решается вопрос о выборе более целесообразного метода очистки и обработки ее.
18. Что представляет собой система ГВС и чем она отличается от системы ХВС здания? В общем виде система горячего водоснабжения состоит из тех же элементов, что и система холодного водоснабжения. Отличие состоит в том, что дополнительно включаются в систему устройства для приготовления теплоносителя, подачи его к водонагревателям, обратный трубопровод, необходимый для циркуляции сети теплоносителя с целью обеспечения относительного постоянства его температуры теплоносителя, распределительной сети системы горячего водоснабжения (рис. 1). Рисунок 1. Схема централизованной системы горячего водоснабжения: 1 - водонагреватель (теплообменный аппарат - на схеме); 2 - водомерный узел (на горячей воде водомеров нет); 3 - подача холодной воды в систему холодной воды; 4 - подающие магистрали; 5 - подающие стояки; 6 - полотенцесушители; 7 - перемычки на техэтаже или чердаке или под потолком; 8 - циркуляционные стояки; 9 - циркуляционные магистрали (в подвале); 10 - циркуляционный насос (гоняет воду по контуру, чтобы компенсировать потери тепла, но не подает для забора); 11 - аккумуляторы горячей воды (тепла) - необходимы при неравномерном потреблении горячей воды; 12 – воздухоотводчики
19. Какие сооружения, включая их разновидности, применяют для осветления воды и фильтрования? Очистные сооружения водопровода. Использование воды поверхностных источников для водоснабжения поселений требует улучшения ее качества. В практике водоснабжения используется различные методы обработки воды на очистных сооружениях водопровода. Под обработкой понимается не только удаление из воды нежелательных примесей и ее обеззараживание, но и добавление в воду недостающих ингредиентов. Процессы обработки воды рассмотрим на примере работы станции очистки воды для хозяйственно-питьевых целей, схема которой приведена на рис. 2.10.1. Рис. 2.10.1. Схема очистной станции водопровода. 1 – насосная станция первого подъема; 2 – смеситель; 3 – реагентное хозяйство; 4 – камера реакции; 5 – вертикальный отстойник; 6 – фильтры; 7 – установка для выработки обеззараживающего агента; 8 – резервуар чистой воды; 9 – насосная станция второго подъема. Насосами насосной станции первого подъема 1 вода подается в приемный резервуар смесителя 2, в котором к воде подмешивается раствор реагента, который приготавливается в реагентном хозяйстве 3. Назначение реагента состоит в интенсификации процесса коагуляции (укрупнения взвесей) и их последующего осаждения. В камере реакции 4 в результате взаимодействия реагента с солями, растворенными в воде, протекает процесс хлопьеобразования и осаждения взвесей на хлопьях. В отстойнике 5 происходит осаждение примесей при малой скорости движения воды, величина которой зависит от конструкции отстойника. В системах водоснабжения городов на станциях очистки воды производительностью более 30000 м3/сут. применяют горизонтальные отстойники. Вертикальные отстойники применяют при производительности станции очистки воды до 5000 м3/сут. Радиальные отстойники предназначены для очистки мутных вод. На станции очистки устанавливают несколько отстойников, работающих по параллельной схеме Габариты отстойников определяются расчетом. В фильтрах 6 происходит очистка воды в результате ее фильтрации через слой мелкозернистого материала – кварцевого песка, дробленого антрацита и др. По скорости движения воды в фильтрах они подразделяются на медленные, скорые, и сверхскорые. Медленные и скорые фильтры делаются открытыми безнапорными, а сверхскорые – закрытыми напорными. На станциях очистки большой производительности применяются скорые и сверхскорые фильтры. Фильтры нуждаются в периодической промывке для удаления загрязнений фильтрующего материала, образовавшихся в результате фильтрации воды. Процессы обработки воды в отстойниках и фильтрах позволяют наряду с очисткой воды удалить из нее значительную часть бактерий и вирусов. Оставшуюся часть нейтрализуют в процессе обеззараживания воды. Различают пять основных способов обеззараживания: - термический; - воздействием на воду сильных окислителей; - ультразвуковым воздействием; - обработкой ультрафиолетовыми лучами; - олигодинамия (контактом воды с ионами благородных металлов, например серебра). На станциях очистки воды большой производительности обеззараживание осуществляется воздействием на воду сильных окислителей, в качестве которых применяется хлор и озон. При хлорировании воды необходим длительный не менее 30 минут контакт хлор с водой. Поэтому хлорирование производится в резервуаре чистой воды путем подачи в него хлорной воды, из установки для выработки обеззараживающего агента 7, которая в данном случае называется хлораторной. При поступлении хлора в воду происходит окисление веществ протоплазмы клеток бактерий, что вызывает их гибель. Хлорирование эффективно против бацилл брюшного тифа, дизентерии, вирусов энцефалита, вибрионов холеры. Недостатком хлорирования является то, что спорообразующие бактерии устойчивы к действию хлора, а также то, что хлор является токсичным газом, что необходимо учитывать при проектировании, строительстве и эксплуатации станции очистки воды. Об эффективности процесса обеззараживания судят по остаточному хлору, концентрация которого не должна превышать допустимых значений. При озонировании уничтожаются бактерии, споры и вирусы, при этом одновременно с обеззараживанием происходит дезодорация, обесцвечивание воды и устраняются привкусы. Озон, химическая формула О3, получают в озонаторах воздействием на воздух электрического разряда. Озонирование имеет ряд существенных преимуществ перед хлорированием. Нет необходимости строгого контроля за концентрацией озона в воде, так как он является нестойким соединением и его избыток превращается в кислород, озон в отличие от хлора не ухудшает свойств воды, время озононирования в несколько раз меньше чем хлорирования. Обеззараживание воды ультрафиолетовыми лучами применяют на установках небольшой производительности. Эффект обеззараживания основан на бактерицидном действии ультрафиолетовых лучей с длиной волны 200-290 мкм.
20. Для чего нужны циркуляционные трубопроводы в системах ГВС? С какой температурой нагрева подается горячая вода к кранам пользователей? Температура горячей воды в местах водоразбора должна быть не ниже 60°С для систем централизованного горячего водоснабжения, присоединенных к открытым системам теплоснабжения, не ниже 50°С — для закрытых систем и не выше 75°С — во всех случаях. Поддержание у водоразборных кранов требуемой температуры горячей воды достигается за счет постоянной циркуляции ее в системе. Наличие циркуляции позволяет использовать систему горячего водоснабжения также для отопления ванных помещений, в которых температура воздуха должна быть выше, чем в других комнатах квартиры. Для этого в контур системы горячего водоснабжения включают полотенцесушители, представляющие собой проточный змеевик из трубы диаметром 32 мм. Циркуляционные трубопроводы и циркуляционные насосы создают непрерывное движение воды - циркуляцию по замкнутому контуру: теплообменник - подающий трубопровод - водоразборный кран - циркуляционный трубопровод - теплообменник, поддерживая температуру горячей воды у водоразборного крана на уровне 50-60 °С.
21. Какие методы обеззараживания применяют на станциях водоподготовки? В чем их преимущества и недостатки?
|