Студопедия — Операционные системы
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Операционные системы






Операционная система

Материал из Википедии — свободной энциклопедии

Перейти к: навигация, поиск

У этого термина существуют и другие значения, см. Операционная система (значения).

Запрос «OS» перенаправляется сюда; см. также другие значения.

 

Операцио́нная систе́ма, сокр. ОС (англ. operating system, OS) — комплекс управляющих и обрабатывающих программ, которые, с одной стороны, выступают как интерфейс между устройствами вычислительной системы и прикладными программами, а с другой стороны — предназначены для управления устройствами, управления вычислительными процессами, эффективного распределения вычислительных ресурсов между вычислительными процессами и организации надёжных вычислений. Это определение применимо к большинству современных операционных систем общего назначения.

 

В логической структуре типичной вычислительной системы операционная система занимает положение между устройствами с их микроархитектурой, машинным языком и, возможно, собственными (встроенными) микропрограммами — с одной стороны — и прикладными программами с другой.

 

Разработчикам программного обеспечения операционная система позволяет абстрагироваться от деталей реализации и функционирования устройств, предоставляя минимально необходимый набор функций (см.: интерфейс программирования приложений).

 

В большинстве вычислительных систем операционная система является основной, наиболее важной (а иногда и единственной) частью системного программного обеспечения. С 1990-х годов наиболее распространёнными операционными системами являются системы семейства Windows и системы класса UNIX (особенно Linux и Mac OS).

Схема, иллюстрирующая место операционной системы в многоуровневой структуре компьютера

Содержание

 

1 Функции

2 Понятие

3 Ядро

4 Эволюция и основные идеи

4.1 Пакетный режим

4.2 Разделение времени и многозадачность

4.3 Разделение полномочий

4.4 Реальный масштаб времени

4.5 Файловые системы и структуры

5 Существующие операционные системы

6 UNIX, стандартизация операционных систем и POSIX

7 Пост-UNIX-архитектуры

8 См. также

9 Примечания

10 Литература

11 Ссылки

 

Функции

 

Основные функции:

 

Исполнение запросов программ (ввод и вывод данных, запуск и остановка других программ, выделение и освобождение дополнительной памяти и др.).

Загрузка программ в оперативную память и их выполнение.

Стандартизованный доступ к периферийным устройствам (устройства ввода-вывода).

Управление оперативной памятью (распределение между процессами, организация виртуальной памяти).

Управление доступом к данным на энергонезависимых носителях (таких как жёсткий диск, оптические диски и др.), организованным в той или иной файловой системе.

Обеспечение пользовательского интерфейса.

Сохранение информации об ошибках системы.

 

Дополнительные функции:

 

Параллельное или псевдопараллельное выполнение задач (многозадачность).

Эффективное распределение ресурсов вычислительной системы между процессами.

Разграничение доступа различных процессов к ресурсам.

Организация надёжных вычислений (невозможности одного вычислительного процесса намеренно или по ошибке повлиять на вычисления в другом процессе), основана на разграничении доступа к ресурсам.

Взаимодействие между процессами: обмен данными, взаимная синхронизация.

Защита самой системы, а также пользовательских данных и программ от действий пользователей (злонамеренных или по незнанию) или приложений.

Многопользовательский режим работы и разграничение прав доступа (см.: аутентификация, авторизация).

 

Компоненты операционной системы:

 

Загрузчик

Ядро

Командный процессор (интерпретатор)

Драйверы устройств

Интерфейс

 

Понятие

 

Существуют две группы определений операционной системы: «набор программ, управляющих оборудованием» и «набор программ, управляющих другими программами». Обе они имеют свой точный технический смысл, который связан с вопросом, в каких случаях требуется операционная система.

 

Есть приложения вычислительной техники, для которых операционные системы излишни. Например, встроенные микрокомпьютеры, содержащиеся во многих бытовых приборах, автомобилях (иногда по десятку в каждом), простейших сотовых телефонах, постоянно исполняют лишь одну программу, запускающуюся по включении. Многие простые игровые приставки — также представляющие собой специализированные микрокомпьютеры — могут обходиться без операционной системы, запуская при включении программу, записанную на вставленном в устройство «картридже» или компакт-диске.

 

Операционные системы нужны, если:

 

вычислительная система используется для различных задач, причём программы, решающие эти задачи, нуждаются в сохранении данных и обмене ими. Из этого следует необходимость универсального механизма сохранения данных; в подавляющем большинстве случаев операционная система отвечает на неё реализацией файловой системы. Современные системы, кроме того, предоставляют возможность непосредственно «связать» вывод одной программы со вводом другой, минуя относительно медленные дисковые операции;

различные программы нуждаются в выполнении одних и тех же рутинных действий. Например, простой ввод символа с клавиатуры и отображение его на экране может потребовать исполнения сотен машинных команд, а дисковая операция — тысяч. Чтобы не программировать их каждый раз заново, операционные системы предоставляют системные библиотеки часто используемых подпрограмм (функций);

между программами и пользователями системы необходимо распределять полномочия, чтобы пользователи могли защищать свои данные от несанкционированного доступа, а возможная ошибка в программе не вызывала тотальных неприятностей;

необходима возможность имитации «одновременного» исполнения нескольких программ на одном компьютере (даже содержащем лишь один процессор), осуществляемой с помощью приёма, известного как «разделение времени». При этом специальный компонент, называемый планировщиком, делит процессорное время на короткие отрезки и предоставляет их поочерёдно различным исполняющимся программам (процессам);

оператор должен иметь возможность так или иначе управлять процессами выполнения отдельных программ. Для этого служат операционные среды — оболочка и наборы утилит — они могут являться частью операционной системы.

 

Таким образом, современные универсальные операционные системы можно охарактеризовать, прежде всего, как:

 

использующие файловые системы (с универсальным механизмом доступа к данным),

многопользовательские (с разделением полномочий),

многозадачные (с разделением времени).

 

Многозадачность и распределение полномочий требуют определённой иерархии привилегий компонентов самой операционной системе. В составе операционной системы различают три группы компонентов:

 

ядро, содержащее планировщик; драйверы устройств, непосредственно управляющие оборудованием; сетевая подсистема, файловая система;

системные библиотеки;

оболочка с утилитами.

 

Большинство программ, как системных (входящих в операционную систему), так и прикладных, исполняются в непривилегированном («пользовательском») режиме работы процессора и получают доступ к оборудованию (и, при необходимости, к другим ресурсам ядра, а также ресурсам иных программ) только посредством системных вызовов. Ядро исполняется в привилегированном режиме: именно в этом смысле говорят, что система (точнее, её ядро) управляет оборудованием.

 

В определении состава операционной системы значение имеет критерий операциональной целостности (замкнутости): система должна позволять полноценно использовать (включая модификацию) свои компоненты. Поэтому в полный состав операционной системы включают и набор инструментальных средств (от текстовых редакторов до компиляторов, отладчиков и компоновщиков).

Ядро

Основная статья: Ядро операционной системы

 

Ядро — центральная часть операционной системы, управляющая выполнением процессов, ресурсами вычислительной системы и предоставляющая процессам координированный доступ к этим ресурсам. Основными ресурсами являются процессорное время, память и устройства ввода-вывода. Доступ к файловой системе и сетевое взаимодействие также могут быть реализованы на уровне ядра.

 

Как основополагающий элемент операционной системы, ядро представляет собой наиболее низкий уровень абстракции для доступа приложений к ресурсам вычислительной системы, необходимым для их работы. Как правило, ядро предоставляет такой доступ исполняемым процессам соответствующих приложений за счёт использования механизмов межпроцессного взаимодействия и обращения приложений к системным вызовам ОС.

 

Описанная задача может различаться в зависимости от типа архитектуры ядра и способа её реализации.

 

Объекты ядра ОС:

 

Процессы

Файлы

События

Потоки

Семафоры

Мьютексы

Каналы

Файлы, проецируемые в память

 

Эволюция и основные идеи

 

Предшественником операционных систем следует считать служебные программы (загрузчики и мониторы), а также библиотеки часто используемых подпрограмм, начавшие разрабатываться с появлением универсальных компьютеров 1-го поколения (конец 1940-х годов). Служебные программы минимизировали физические манипуляции оператора с оборудованием, а библиотеки позволяли избежать многократного программирования одних и тех же действий (осуществления операций ввода-вывода, вычисления математических функций и т. п.).

 

В 1950—1960-х годах сформировались и были реализованы основные идеи, определяющие функциональность ОС: пакетный режим, разделение времени и многозадачность, разделение полномочий, реальный масштаб времени, файловые структуры и файловые системы.

Пакетный режим

 

Необходимость оптимального использования дорогостоящих вычислительных ресурсов привела к появлению концепции «пакетного режима» исполнения программ. Пакетный режим предполагает наличие очереди программ на исполнение, причём система может обеспечивать загрузку программы с внешних носителей данных в оперативную память, не дожидаясь завершения исполнения предыдущей программы, что позволяет избежать простоя процессора.

Разделение времени и многозадачность

 

Уже пакетный режим в своём развитом варианте требует разделения процессорного времени между выполнением нескольких программ.

 

Необходимость в разделении времени (многозадачности, мультипрограммировании) проявилась ещё сильнее при распространении в качестве устройств ввода-вывода телетайпов (а позднее, терминалов с электронно-лучевыми дисплеями) (1960-е годы). Поскольку скорость клавиатурного ввода (и даже чтения с экрана) данных оператором много ниже, чем скорость обработки этих данных компьютером, использование компьютера в «монопольном» режиме (с одним оператором) могло привести к простою дорогостоящих вычислительных ресурсов.

 

Разделение времени позволило создать «многопользовательские» системы, в которых один (как правило) центральный процессор и блок оперативной памяти соединялся с многочисленными терминалами. При этом часть задач (таких как ввод или редактирование данных оператором) могла исполняться в режиме диалога, а другие задачи (такие как массивные вычисления) — в пакетном режиме.

Разделение полномочий

 

Распространение многопользовательских систем потребовало решения задачи разделения полномочий, позволяющей избежать возможности изменения исполняемой программы или данных одной программы в памяти компьютера другой программой (намеренно или по ошибке), а также изменения самой системы прикладной программой.

 

Реализация разделения полномочий в операционных системах была поддержана разработчиками процессоров, предложивших архитектуры с двумя режимами работы процессора — «реальным» (в котором исполняемой программе доступно всё адресное пространство компьютера) и «защищённым» (в котором доступность адресного пространства ограничена диапазоном, выделенном при запуске программы на исполнение).

Реальный масштаб времени

Основная статья: Операционная система реального времени

 

Применение универсальных компьютеров для управления производственными процессами потребовало реализации «реального масштаба времени» («реального времени») — синхронизации исполнения программ с внешними физическими процессами.

 

Включение функции реального масштаба времени позволило создавать решения, одновременно обслуживающие производственные процессы и решающие другие задачи (в пакетном режиме и/или в режиме разделения времени).

Файловые системы и структуры

 

Постепенная замена носителей с последовательным доступом (перфолент, перфокарт и магнитных лент) накопителями произвольного доступа (на магнитных дисках).

 

Файловая система — способ хранения данных на внешних запоминающих устройствах.

Существующие операционные системы

Основная статья: Список операционных систем

UNIX, стандартизация операционных систем и POSIX

 

К концу 1960-х годов отраслью и научно-образовательным сообществом был создан целый ряд операционных систем, реализующих все или часть очерченных выше функций. К ним относятся Atlas (Манчестерский университет), CTTS и ITSS (Массачусетский технологический институт, MIT), THE (Эйндховенский технологический университет), RS4000 (Университет Орхуса) и др. (всего эксплуатировалось более сотни различных ОС).

 

Наиболее развитые операционные системы, такие как OS/360 (IBM), SCOPE (CDC (англ.)) и завершённый уже в 1970-х годах Multics (MIT и Bell Labs), предусматривали возможность исполнения на многопроцессорных компьютерах.

 

Эклектичный характер разработки операционных систем привёл к нарастанию кризисных явлений, прежде всего, связанных с чрезмерными сложностью и размерами создаваемых систем. Системы были плохо масштабируемыми (более простые не могли использовать все возможности крупных вычислительных систем; более развитые неоптимально исполнялись на малых или не могли исполняться на них вовсе) и полностью несовместимыми между собой, их разработка и совершенствование затягивались.

 

Задуманная и реализованная в 1969 году Кеном Томпсоном при участии нескольких коллег (включая Денниса Ритчи и Брайана Кернигана), операционная система UNIX (первоначально UNICS, что обыгрывало название Multics) вобрала в себя многие черты более ранних систем, но обладала целым рядом свойств, отличающих её от большинства предшественниц:

 

простая метафорика (два ключевых понятия: вычислительный процесс и файл);

компонентная архитектура: принцип «одна программа — одна функция» плюс мощные средства связывания различных программ для решения возникающих задач («оболочка»);

минимизация ядра (кода, выполняющегося в «реальном» (привилегированном) режиме процессора) и количества системных вызовов;

независимость от аппаратной архитектуры и реализация на машиннонезависимом языке программирования (язык программирования Си стал побочным продуктом разработки UNIX);

унификация файлов.

 

UNIX, благодаря своему удобству прежде всего в качестве инструментальной среды (среды разработки), обрела популярность сначала в университетах, а затем и в отрасли, получившей прототип единой операционной системы, которая могла использоваться на самых разных вычислительных системах и, более того, могла быть быстро и с минимальными усилиями перенесена на любую вновь разработанную аппаратную архитектуру.

 

В конце 1970-х годов сотрудники Калифорнийского университета в Беркли внесли ряд усовершенствований в исходные коды UNIX, включая работу с протоколами TCP/IP. Их разработка стала известна под именем BSD (Berkeley Software Distribution).

 

Задачу разработать независимую (от авторских прав Bell Labs) реализацию той же архитектуры поставил и Ричард Столлман, основатель проекта GNU.

 

Благодаря конкурентности реализаций архитектура UNIX стала вначале фактическим отраслевым стандартом, а затем обрела статус и стандарта юридического — ISO/IEC 9945[1] (POSIX).

 

Только системы, отвечающие спецификации Single UNIX Specification, имеют право носить имя UNIX. К таким системам относятся AIX, HP-UX, IRIX, Mac OS X, SCO OpenServer, Solaris, Tru64 и z/OS.

 

Операционные системы, следующие стандарту POSIX или опирающиеся на него, называют «POSIX-совместимыми» (чаще встречается словоупотребление «UNIX-подобные» или «семейство UNIX», но оно противоречит статусу торгового знака «UNIX», принадлежащего консорциуму The Open Group и зарезервированному для обозначения только операционных систем, строго следующих стандарту). Сертификация на совместимость со стандартом платная, из-за чего некоторые системы не проходили этот процесс, однако считаются POSIX-совместимыми по существу.

 

К UNIX-подобным относятся операционные системы, основанные на последней версии UNIX, выпущенной Bell Labs (System V), на разработках университета Беркли (FreeBSD, OpenBSD, NetBSD), на основе Solaris (OpenSolaris, BeleniX, Nexenta), а также Linux, разработанная в части утилит и библиотек проектом GNU и в части ядра — сообществом, возглавляемым Линусом Торвальдсом.

 

Стандартизация операционных систем преследует цель упрощения замены самой системы или оборудования при развитии вычислительной системы или сети и упрощении переноса прикладного программного обеспечения (строгое следование стандарту предполагает полную совместимость программ на уровне исходного текста; из-за профилирования стандарта и его развития некоторые изменения бывают всё же необходимы, но перенос программы между POSIX-совместимыми системами обходится на порядки дешевле, чем между альтернативными), а также преемственность опыта пользователей.

 

Самым заметным эффектом существования этого стандарта стало эффективное разворачивание Интернета в 1990-х годах.

Пост-UNIX-архитектуры

 

Коллектив, создавший UNIX, развил концепцию унификации объектов операционной системы, включив в исходную концепцию UNIX «устройство — это тоже файл» также и процессы, и любые другие системные, сетевые и прикладные сервисы, создав новую концепцию: «что угодно — это файл». Эта концепция стала одним из основных принципов системы Plan 9 (название было позаимствовано из фантастического триллера «План 9 из открытого космоса» Эдварда Вуда-младшего), призванной преодолеть принципиальные недостатки дизайна UNIX и сменившей «рабочую лошадку» UNIX System V на компьютерах сети Bell Labs в 1992 году.

 

Кроме реализации всех объектов системы в виде файлов и размещения их на едином и персональном для каждого терминала вычислительной сети пространстве (namespace), были пересмотрены другие архитектурные решения UNIX. Например, в Plan 9 отсутствует понятие «суперпользователь», и, соответственно, исключаются любые нарушения режима безопасности, связанные с нелегальным получением прав суперпользователя в системе. Для представления (хранения, обмена) информации Роб Пайк и Кен Томпсон разработали универсальную кодировку UTF-8, на сегодняшний день ставшую стандартом де-факто. Для доступа к файлам используется единый универсальный протокол 9P, по сети работающий поверх сетевого протокола (TCP или UDP). Таким образом, для прикладного ПО сети не существует — доступ к локальным и к удалённым файлам единообразен. 9P — байт-ориентированный протокол, в отличие от других подобных протоколов, являющихся блок-ориентированными. Это также результат работы концепции: доступ побайтно — к унифицированным файлам, а не поблочно — к разнообразным и сильно изменяющимися с развитием технологий устройствам. Для контроля доступа к объектам не требуется иных решений, кроме уже существующего в операционной системе контроля доступа к файлам. Новая концепция системы хранения избавила администратора системы от изнурительного труда по сопровождению архивов и предвосхитила современные системы управления версиями файлов.

 

Операционные системы, созданные на базе или идеях UNIX, такие как всё семейство BSD и системы GNU/Linux, постепенно перенимают новые идеи из Bell Labs. Возможно, эти новые идеи ждёт большое будущее и признание ИТ-разработчиков.

 

Новые концепции были использованы Робом Пайком в Inferno.

 

На основе Plan 9 в Испании разрабатываются системы Off++ и Plan B, носящие экспериментальный характер.

 

К попыткам создать пост-UNIX-архитектуру можно также отнести разработку системы программирования и операционной среды Оберон в Швейцарской высшей технической школе (ETH Zurich) под руководством профессора Никлауса В







Дата добавления: 2015-12-04; просмотров: 168. Нарушение авторских прав; Мы поможем в написании вашей работы!



Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия