БЕСКОНЕЧНО МАЛЫЕ ФУНКЦИИ И ИХ ОСНОВНЫЕ СВОЙСТВА
Функция y=f(x) называется бесконечно малой при x→a или при x →∞, если или , т.е. бесконечно малая функция – это функция, предел которой в данной точке равен нулю. Примеры. Функция f(x) =(x -1)2 является бесконечно малой при x →1, так как (см. рис.). Функция f(x) = tg x – бесконечно малая при x →0. f(x) = ln (1+ x)– бесконечно малая при x →0. f(x) = 1/ x – бесконечно малая при x →∞. Установим следующее важное соотношение: Теорема. Если функция y=f(x) представима при x→a в виде суммы постоянного числа b и бесконечно малой величины α(x): f (x)=b+ α(x) то . Обратно, если , то f (x)=b+α(x), где a(x) – бесконечно малая при x→a. Доказательство. Докажем первую часть утверждения. Из равенства f(x)=b+α(x) следует |f(x) – b|=| α|. Но так как a(x) – бесконечно малая, то при произвольном ε найдется δ – окрестность точки a, при всех x из которой, значения a(x) удовлетворяют соотношению |α(x)|<ε. Тогда |f(x) – b|< ε. А это и значит, что . Если , то при любом ε >0 для всех х из некоторой δ – окрестность точки a будет |f(x) – b|< ε. Но если обозначим f(x) – b= α;, то |α(x)|<ε, а это значит, что a – бесконечно малая. Рассмотрим основные свойства бесконечно малых функций. Теорема 1. Алгебраическая сумма двух, трех и вообще любого конечного числа бесконечно малых есть функция бесконечно малая. Доказательство. Приведем доказательство для двух слагаемых. Пусть f(x)=α(x)+β(x), где и . Нам нужно доказать, что при произвольном как угодно малом ε >0 найдется δ>0, такое, что для x, удовлетворяющих неравенству |x – a|<δ;, выполняется |f(x)|< ε. Итак, зафиксируем произвольное число ε >0. Так как по условию теоремы α(x) – бесконечно малая функция, то найдется такое δ1 >0, что при |x – a|<δ1 имеем |α(x)|< ε / 2. Аналогично, так как β(x) – бесконечно малая, то найдется такое δ2 >0, что при |x – a|<δ2 имеем | β(x)|< ε / 2. Возьмем δ=min{ δ1, δ2 }. Тогда в окрестности точки a радиуса δ;будет выполняться каждое из неравенств |α(x)|< ε / 2 и | β(x)|< ε / 2. Следовательно, в этой окрестности будет |f(x)|=| α(x)+β(x) | ≤ |α(x)| + | β(x)| < ε /2 + ε /2= ε, т.е. |f(x)|<ε, что и требовалось доказать. Теорема 2. Произведение бесконечно малой функции a(x) на ограниченную функцию f(x) при x→a (или при x→∞;) есть бесконечно малая функция. Доказательство. Так как функция f(x) ограничена, то существует число М такое, что при всех значениях x из некоторой окрестности точки a|f(x)|≤M. Кроме того, так как a(x) – бесконечно малая функция при x→a, то для произвольного ε >0 найдется окрестность точки a, в которой будет выполняться неравенство |α(x)|< ε /M. Тогда в меньшей из этих окрестностей имеем | αf|< ε /M = ε. А это и значит, что af – бесконечно малая. Для случая x→∞; доказательство проводится аналогично. Из доказанной теоремы вытекают: Следствие 1. Если и , то . Следствие 2. Если и c= const, то . Теорема 3. Отношение бесконечно малой функции α(x) на функцию f(x), предел которой отличен от нуля, есть бесконечно малая функция. Доказательство. Пусть . Тогда 1 /f(x) есть ограниченная функция. Поэтому дробь есть произведение бесконечно малой функции на функцию ограниченную, т.е. функция бесконечно малая.
СООТНОШЕНИЕ МЕЖДУ БЕСКОНЕЧНО МАЛЫМИ И БЕСКОНЕЧНО БОЛЬШИМИ ФУНКЦИЯМИ Теорема 1. Если функция f(x) является бесконечно большой при x→a, то функция 1 /f(x) является бесконечно малой при x→a. Доказательство. Возьмем произвольное число ε >0 и покажем, что при некотором δ>0 (зависящим от ε) при всех x, для которых |x – a|<δ;, выполняется неравенство , а это и будет означать, что 1/f(x) – бесконечно малая функция. Действительно, так как f(x) – бесконечно большая функция при x→a, то найдется δ>0 такое, что как только |x – a|<δ;, так | f(x)|>1 / ε. Но тогда для тех же x . Примеры. Ясно, что при x→+∞ функция y=x2+ 1 является бесконечно большой. Но тогда согласно сформулированной выше теореме функция – бесконечно малая при x→+∞;, т.е. . . Можно доказать и обратную теорему. Теорема 2. Если функция f(x) - бесконечно малая при x→a (или x→∞) и не обращается в нуль, то y= 1 /f(x) является бесконечно большой функцией.
Примеры. . . , так как функции и - бесконечно малые при x→+∞;, то , как сумма бесконечно малых функций есть функция бесконечно малая. Функция же является суммой постоянного числа и бесконечно малой функции. Следовательно, по теореме 1 для бесконечно малых функций получаем нужное равенство. Таким образом, простейшие свойства бесконечно малых и бесконечно больших функций можно записать с помощью следующих условных соотношений: A ≠ 0 .
|