Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

БЕСКОНЕЧНО МАЛЫЕ ФУНКЦИИ И ИХ ОСНОВНЫЕ СВОЙСТВА





Функция y=f(x) называется бесконечно малой при x→a или при x →∞, если или , т.е. бесконечно малая функция – это функция, предел которой в данной точке равен нулю.

Примеры.

Функция f(x) =(x -1)2 является бесконечно малой при x →1, так как (см. рис.).

Функция f(x) = tg x – бесконечно малая при x →0.

f(x) = ln (1+ x)– бесконечно малая при x →0.

f(x) = 1/ x – бесконечно малая при x →∞.

Установим следующее важное соотношение:

Теорема. Если функция y=f(x) представима при x→a в виде суммы постоянного числа b и бесконечно малой величины α(x): f (x)=b+ α(x) то .

Обратно, если , то f (x)=b+α(x), где a(x) – бесконечно малая при x→a.

Доказательство.

Докажем первую часть утверждения. Из равенства f(x)=b+α(x) следует |f(x) – b|=| α|. Но так как a(x) – бесконечно малая, то при произвольном ε найдется δ – окрестность точки a, при всех x из которой, значения a(x) удовлетворяют соотношению |α(x)|<;ε. Тогда |f(x) – b|<; ε. А это и значит, что .

Если , то при любом ε >0 для всех х из некоторой δ – окрестность точки a будет |f(x) – b|<; ε. Но если обозначим f(x) – b= α;, то |α(x)|<;ε, а это значит, что a – бесконечно малая.

Рассмотрим основные свойства бесконечно малых функций.

Теорема 1. Алгебраическая сумма двух, трех и вообще любого конечного числа бесконечно малых есть функция бесконечно малая.

Доказательство. Приведем доказательство для двух слагаемых. Пусть f(x)=α(x)+β(x), где и . Нам нужно доказать, что при произвольном как угодно малом ε >;0 найдется δ>;0, такое, что для x, удовлетворяющих неравенству |x – a|<δ;, выполняется |f(x)|<; ε.

Итак, зафиксируем произвольное число ε >;0. Так как по условию теоремы α(x) – бесконечно малая функция, то найдется такое δ1 >;0, что при |x – a|<1 имеем |α(x)|<; ε / 2. Аналогично, так как β(x) – бесконечно малая, то найдется такое δ2 >;0, что при |x – a|<2 имеем | β(x)|<; ε / 2.

Возьмем δ=min{ δ1, δ2 }. Тогда в окрестности точки a радиуса δ;будет выполняться каждое из неравенств |α(x)|<; ε / 2 и | β(x)|<; ε / 2. Следовательно, в этой окрестности будет

|f(x)|=| α(x)+β(x) | ≤ |α(x)| + | β(x)| <; ε /2 + ε /2= ε,

т.е. |f(x)|<;ε, что и требовалось доказать.

Теорема 2. Произведение бесконечно малой функции a(x) на ограниченную функцию f(x) при x→a (или при x→∞;) есть бесконечно малая функция.

Доказательство. Так как функция f(x) ограничена, то существует число М такое, что при всех значениях x из некоторой окрестности точки a|f(x)|≤M. Кроме того, так как a(x) – бесконечно малая функция при x→a, то для произвольного ε >;0 найдется окрестность точки a, в которой будет выполняться неравенство |α(x)|<; ε /M. Тогда в меньшей из этих окрестностей имеем | αf|<; ε /M = ε. А это и значит, что af – бесконечно малая. Для случая x→∞; доказательство проводится аналогично.

Из доказанной теоремы вытекают:

Следствие 1. Если и , то .

Следствие 2. Если и c= const, то .

Теорема 3. Отношение бесконечно малой функции α(x) на функцию f(x), предел которой отличен от нуля, есть бесконечно малая функция.

Доказательство. Пусть . Тогда 1 /f(x) есть ограниченная функция. Поэтому дробь есть произведение бесконечно малой функции на функцию ограниченную, т.е. функция бесконечно малая.

 

СООТНОШЕНИЕ МЕЖДУ БЕСКОНЕЧНО МАЛЫМИ

И БЕСКОНЕЧНО БОЛЬШИМИ ФУНКЦИЯМИ

Теорема 1. Если функция f(x) является бесконечно большой при x→a, то функция 1 /f(x) является бесконечно малой при x→a.

Доказательство. Возьмем произвольное число ε >0 и покажем, что при некотором δ>0 (зависящим от ε) при всех x, для которых |x – a|<δ;, выполняется неравенство , а это и будет означать, что 1/f(x) – бесконечно малая функция. Действительно, так как f(x) – бесконечно большая функция при x→a, то найдется δ>0 такое, что как только |x – a|<δ;, так | f(x)|>;1 / ε. Но тогда для тех же x .

Примеры.

Ясно, что при x→+∞ функция y=x2+ 1 является бесконечно большой. Но тогда согласно сформулированной выше теореме функция – бесконечно малая при x→+∞;, т.е. .

.

Можно доказать и обратную теорему.

Теорема 2. Если функция f(x) - бесконечно малая при x→a (или x→∞) и не обращается в нуль, то y= 1 /f(x) является бесконечно большой функцией.

 

Примеры.

.

.

, так как функции и - бесконечно малые при x→+∞;, то , как сумма бесконечно малых функций есть функция бесконечно малая. Функция же является суммой постоянного числа и бесконечно малой функции. Следовательно, по теореме 1 для бесконечно малых функций получаем нужное равенство.

Таким образом, простейшие свойства бесконечно малых и бесконечно больших функций можно записать с помощью следующих условных соотношений: A ≠ 0

.

 

 







Дата добавления: 2015-12-04; просмотров: 222. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия