Графический способ
Числовые функции можно также задавать с помощью графика. Пусть - вещественная функция n переменных. Рассмотрим некоторое (n+1)-мерное линейное пространство над полем вещественных чисел (так как функция вещественная). Выберем в этом пространстве любой базис (). Каждой точке функции сопоставим вектор: . Таким образом, мы будем иметь множество векторов линейного пространства, соответствующих точкам данной функции по указанному правилу. Точки соответствующего аффинного пространства будут образовывать некоторую поверхность. Если в качестве линейного пространства взять евклидово пространство свободных геометрических векторов (направленных отрезков), а число аргументов функции f не превосходит 2, указанное множество точек можно изобразить наглядно в виде чертежа (графика). Если сверх того исходный базис взять ортонормированным, получим "школьное" определение графика функции. Для функций 3 аргументов и более такое представление не применимо ввиду отсутствия у человека геометрической интуиции многомерных пространств. Однако, и для таких функций можно придумать наглядное полугеометрическое представление (например каждому значению четвертой координаты точки сопоставить некоторый цвет на графике)
Пропорциональные величины. Если переменные y и x прямо пропорциональны, то функциональная зависимость между ними выражается уравнением: y = k x, где k - постоянная величина (коэффициент пропорциональности). График прямой пропорциональности – прямая линия, проходящая через начало координат и образующая с осью X угол , тангенс которого равен k: tan = k (рис.8). Поэтому, коэффициент пропорциональности называется также угловым коэффициентом. На рис.8 показаны три графика для k = 1/3, k = 1 и k = 3.
Линейная функция. Если переменные y и x связаны уравнением 1-ой степени:
A x + B y = C,
где по крайней мере одно из чисел A или B не равно нулю, то графиком этой функциональной зависимости является прямая линия. Если C = 0, то она проходит через начало координат, в противном случае - нет. Графики линейных функций для различных комбинаций A, B, C показаны на рис.9. Обратная пропорциональность. Если переменные y и x обратно пропорциональны, то функциональная зависимость между ними выражается уравнением:
y = k / x, где k - постоянная величина. График обратной пропорциональности – гипербола (рис.10). У этой кривой две ветви. Гиперболы получаются при пересечении кругового конуса плоскостью (о конических сечениях см. раздел «Конус» в главе «Стереометрия»). Как показано на рис.10, произведение координат точек гиперболы есть величина постоянная, в нашем примере равная 1. В общем случае эта величина равна k, что следует из уравнения гиперболы: xy = k. Основные характеристики и свойства гиперболы: - область определения функции: x 0, область значений: y 0; - функция монотонная (убывающая) при x < 0и при x > 0, но не монотонная в целом из-за точки разрыва x = 0); - функция неограниченная, разрывная в точке x = 0, нечётная, непериодическая; - нулей функция не имеет.
Квадратичная функция. Это функция: y = ax 2 + bx + c, где a, b, c - постоянные, a 0. В простейшем случае имеем: b = c = 0 и y = ax 2. График этой функции квадратная парабола - кривая, проходящая через начало координат (рис.11). Каждая парабола имеет ось симметрии OY, которая называется осью параболы. Точка O пересечения параболы с её осью называется вершиной параболы.
Квадратичная функция. Это функция: y = ax 2 + bx + c, где a, b, c - постоянные, a 0. В простейшем случае имеем: b = c = 0 и y = ax 2. График этой функции квадратная парабола - кривая, проходящая через начало координат (рис.11). Каждая парабола имеет ось симметрии OY, которая называется осью параболы. Точка O пересечения параболы с её осью называется вершиной параболы.
Форма и расположение квадратной параболы в системе координат полностью зависит от двух параметров: коэффициента a при x 2 и дискриминанта D: D = b 2 – 4 ac. Эти свойства следуют из анализа корней квадратного уравнения (см. соответствующий раздел в главе «Алгебра»). Все возможные различные случаи для квадратной параболы показаны на рис.12.
Основные характеристики и свойства квадратной параболы: - область определения функции: ; < x + (т.e. x R), а область значений: … (ответьте, пожалуйста, на этот вопрос сами!); - функция в целом не монотонна, но справа или слева от вершины ведёт себя, как монотонная; - функция неограниченная, всюду непрерывная, чётная при b = c = 0, и непериодическая; - при D < 0 не имеет нулей.
Показательная функция. Функция y = ax, где a - положительное постоянное число, называется показательной функцией. Аргумент x принимает любые действительные значения; в качестве значений функции рассматриваются только положительные числа, так как иначе мы имеем многозначную функцию. Так, функция y = 81 x имеет при x = 1/4 четыре различных значения: y = 3, y = 3, y = 3 i и y = 3 i (проверьте, пожалуйста!). Но мы рассматриваем в качестве значения функции только y = 3. Графики показательной функции для a = 2 и a = 1/2 представлены на рис.17. Они проходят через точку (0, 1). При a = 1 мы имеем график прямой линии, параллельной оси Х, т.e. функция превращается в постоянную величину, равную 1. При a > 1 показательная функция возрастает, a при 0 < a < 1 – убывает. Основные характеристики и свойства показательной функции: - область определения функции: ; < x + (т.e. x R); область значений: y > 0; - функция монотонна: возрастает при a > 1 и убывает при 0 < a < 1; - функция неограниченная, всюду непрерывная, непериодическая; - нулей функция не имеет.
Логарифмическая функция. Функция y = log a x, где a – постоянное положительное число,не равное 1, называется логарифмической. Эта функция является обратной к показательной функции; её график (рис.18) может быть получен поворотом графика показательной функции вокруг биссектрисы 1-го координатного угла. Основные характеристики и свойства логарифмической функции: - область определения функции: x > 0,а область значений: ; < y + (т.e. y R); - это монотонная функция: она возрастает при a > 1 и убывает при 0 < a < 1; - функция неограниченная, всюду непрерывная, непериодическая; - у функции есть один ноль: x = 1.
Тригонометрические функции. При построении тригонометрических функций мы используем радианную меру измерения углов.Тогда функция y = sin x представляется графиком (рис.19). Эта кривая называется синусоидой.
График функции y = cos x представлен на рис.20; это также синусоида, полученная в результате перемещения графика y = sin x вдоль оси Х влево на 2 Из этих графиков очевидны характеристики и свойства этих функций: - область определения: ; < x + область значений: 1 y +1; - эти функции периодические: их период 2 ; - функции ограниченные (| y | , всюду непрерывные, не монотонные, но имеющие так называемые интервалы монотонности, внутри которых они ведут себя, как монотонные функции (см. графики рис.19 и рис.20); - функции имеют бесчисленное множество нулей (подробнее см. раздел «Тригонометрические уравнения»).
Графики функций y = tan x и y = cot x показаны соответственно на рис.21 и рис.22
Из графиков видно, что эти функции: периодические (их период , неограниченные, в целом не монотонные, но имеют интервалы монотонности (какие?), разрывные (какие точки разрыва имеют эти функции?). Область определения и область значений этих функций:
Функции y = Arcsin x (рис.23) и y = Arccos x (рис.24)многозначные, неограниченные; их область определения и область значений соответственно: 1 x +1 и ; < y + . Поскольку эти функции многозначные, не рассматриваемые в элементарной математике, в качестве обратных тригонометрических функций рассматриваются их главные значения: y = arcsin x и y = arccos x; их графики выделены на рис.23 и рис.24 жирными линиями.
Функции y = arcsin x и y = arccos x обладают следующими характеристиками и свойствами: - у обеих функций одна и та же область определения: 1 x +1; их области значений: /2 y /2 для y = arcsin x и 0 y для y = arccos x; - функции ограниченные, непериодические, непрерывные и монотонные (y = arcsin x – возрастающая функция; y = arccos x – убывающая); - каждая функция имеет по одному нулю (x = 0 у функции y = arcsin x и x = 1 у функции y = arccos x).
Функции y = Arctan x (рис.25) и y = Arccot x (рис.26)- многозначные, неограниченные функции; их область определения: x + . Их главные значения y = arctan x и y = arccot x рассматриваются в качестве обратных тригонометрических функций; их графики выделены на рис.25 и рис.26 жирными ветвями.
Функции y = arctan x и y = arccot x имеют следующие характеристики и свойства: - у обеих функций одна и та же область определения: x + ; их области значений: /2< y < /2 для y = arctan x и 0 < y < для y = arccos x; - функции ограниченные, непериодические, непрерывные и монотонные (y = arctan x – возрастающая функция; y = arccot x – убывающая); - только функция y = arctan x имеет единственный ноль (x = 0); функция y = arccot x нулей не имеет. Композиция функций Если даны два отображения и , где , то имеет смысл "сквозное отображение" из в , заданное формулой , , которое называется композицией функций и и обозначается . Рис.1.30.Сквозное отображение из в
Таким образом, , при всех . Другое название композиции -- сложная функция (так как сквозное отображение "сложено" из отображений и ). Пример 1.18 Пусть , , и , . Тогда , и определена композиция
Упражнение 1.3 Покажите, что если заменить множество в предыдущем примере на , то композиция снова будет определена, но равна теперь , а не . Пример 1.19 Пусть , , и , . Тогда определена композиция , заданная формулой . По известной формуле приведения полученная композиция -- это косинус: при всех . Замечание 1.5 Даже если для функций и имеют смысл обе композиции и (что бывает далеко не для любой пары функций и ), то функции и не обязаны совпадать; как правило, это не так. Пример 1.20 Пусть и , . Тогда , а . Очевидно, что это разные функции: при всех , а принимает значение , например, при . Применяя композицию функций, которые сами могут получаться как композиции, мы можем получать сложные функции вида и более длинные композиции.
Вопрос33 Взаимно-однозначное соответствие между множествами. Обратное правило и обратная функция. Графики взаимно обратных функций. Определения, свойства и графики гиперболических функций. (тут уже начинается вынос мозга) Мощностью конечного множества (множества, содержащего конечное число элементов) называется количество его элементов. Мощность множества A обозначается m (A). Пример 1 Определите мощность множества A = {1, 3, 5, 7, 9} нечётных чисел. Показать решение Простым пересчётом элементов убеждаемся, что нечётных чисел всего 5, и потому m (A) = 5. Ответ. 5. Ясно (да ну!), что понятие мощности конечных множеств позволяет сравнивать их по количеству элементов. Так, если A = {1, 3, 5, 7, 9}, а B = {2, 4, 6, 8}, то m (A) = 5, а m (B) = 4 и потому m (A) > m (B). Однако если мы имеем дело с бесконечными множествами, то пересчитать элементы множества уже не удастся. Но иногда можно, как говорят, установить взаимно однозначное соответствие между двумя бесконечными множествами.
Говорят, что между множествами A и B установлено взаимно однозначное соответствие, если из элементов этих множеств можно составить пары (a, b), причем каждый элемент из A и каждый элемент из B входят в одну и только одну пару. Множества, между которыми установлено взаимно однозначное соответствие, содержат одинаковое количество элементов.
Множества A и B называют равномощными, если между их элементами можно установить взаимно однозначное соответствие (ещё говорят: можно установить взаимно однозначное отображение множеств). Мощность множества натуральных чисел обозначается א. Алеф א – первая буква еврейского алфавита, так обозначается наименьшая возможная для бесконечных множеств мощность.
Множества, равномощные множеству натуральных чисел, называются счётными множествами. Пример 2 Множество натуральных чисел равномощно множеству нечётных чисел, так как между ними можно установить взаимно однозначное соответствие, например, по следующему правилу: 1 2 3... n... ↕ ↕ ↕ ↕ 1 3 5... 2 n – 1... Так как множество нечётных чисел является подмножеством натуральных чисел, то этот пример показывает, что бесконечное множество может быть равномощно своему подмножеству. Пример 3 Множество положительных рациональных чисел счётно. Действительно, если представить каждое рациональное число в виде несократимой дроби и записать его в следующую таблицу, а затем пронумеровать, как указано на рисунке, то окажется, что множество рациональных положительных чисел действительно счётно. 1 Рисунок 4.1.2.1.
Пример 4 Любой отрезок [ a; b ] равномощен отрезку [0; 1]. Взаимно однозначное соответствие между ними устанавливает формула y = (b − a) · x + a, где x [0; 1], y [ a; b ]. Пример 5 Множества и счётны и потому равномощны. В самом деле, установим взаимно однозначное соответствие между ними по следующему правилу: A ... ... ↕ ↕ ↕ ↕ ↕ ↕ ↕ N 1 2 3... n... ↕ ↕ ↕ ↕ ↕ ↕ ↕ B 0 ... ... Существуют и другие бесконечные множества, мощность которых больше, чем мощность счётных множеств. Так, множество всех точек отрезка [0; 1] не равномощно множеству натуральных чисел доказательство этой теоремы принадлежит немецкому математику Георгу Кантору. Как было показано в примере 4, множество всех точек отрезка [0; 1] равномощно множеству точек отрезка любой длины. Легко показать равномощность множеств отрезка [ a; b ] и интервала (a; b), а также отрезка [ a; b ] и луча (a; +∞). Наконец, можно доказать равномощность множеств всех точек отрезка и квадрата. Мощность множества всех действительных чисел (или, что то же, множества всех точек числовой оси) обозначается символом c («континуум»). Поскольку множество всех действительных чисел несчётно, то א < c. Континуум – не самая большая из бесконечных мощностей. Так, мощность множества всех подмножеств точек числовой оси больше, чем мощность самого множества всех точек оси. Она обозначается 2 c и называется гиперконтинуумом.
Обратная функция. Теорема о существовании и непрерывности обратной функции. f−1(f(x))=f(f−1(x))=x. Монотонные функции и их свойства. Существование и непрерывность обратной функции. Теорема 1. Если функция y=f(x) строго возрастает (убывает) на множестве X, то для нее существует обратная функция x=f−1(y), которая определена на множестве Y=f(X) и является на Y строго возрастающей (убывающей). Доказательство. По условию функция f строго возрастает на множестве X. Это значит для любых x1,x2∈X и x1<x2 следует f(x1)<f(x2). Отсюда следует, что функция f обратима на X, следовательно, для нее существует обратная функция f−1:Y→X. Покажем, что функция f−1 строго возрастает на множестве Y. Пусть y1 и y2- любые точки из Y и y1<y2. Докажем, что x1=f−1(y1)<x2=f−1(y2). Допустим, чтоx1≥x2. По условию функция f строго возрастает на X, поэтому из условия x1≥x2 вытекает неравенствоy1=f(x1)≥y2=f(x2), что противоречит условию y1<y2. Т.о., условие строгой монотонности функции является достаточным для существования обратной функции.
Теорема 2. Если функция y=f(x) строго возрастает (убывает) и непрерывна на промежутке I, то существует обратная функция x=f−1(y), которая определена на промежутке Ef=f(I) и является на Е, строго возрастающей (убывающей) и непрерывной. Доказательство. Для определенности предположим, что функция f строго возрастает на промежутке I. По следствию из 2-ой теоремы Больцано-Коши область значений Ef=f(I) непрерывной функции f тоже есть промежуток. В силу строгого возрастания функции f для каждого y∈E существует единственная точка x∈I такая, что f(x)=y. Следовательно для функции f существует обратная функция f−1 определенная на промежутке Е и с множеством значений I. Покажем, что f−1 строго возрастает на Е. Пусть y1 и y2-- две произвольные точки из Е, такие, что y1<y2 и прообразами этих точек будут точки x1и x2. f−1(y1)=x1, и f−1(y2)=x2. Поскольку f - строго возрастающая функция, то неравенство y1=f(x1)<f(x2)=y2 возможно тогда и только тогда когда x1<x2 или тоже самое, когда f−1(y1)<f−1(y2). В силу произвольности y1 и y2 ∈E делаем вывод, что функция f−1 - строго возрастает на множестве Е. Что и требовалось доказать. 1. Гиперболическими синусом, косинусом, тангенсом и котангенсом называются функции: ; ; . ch(x± y)=chx · chy ± shx · shy, (1) sh(x± y)=shx · chy± chx · shy, (2) ch2x–sh2x=1, (3) ch2x=ch2x+sh2x, (4) sh2x=2shx · chx. (5) Тождества (2) и (5) аналогичны соответствующим формулам тригонометрии, а формулы (1), (3) и (4) отличаются от тригонометрических только знаком. Доказываются тождества (1) – (5) непосредственной проверкой. Более подробно о тождествах для гиперболических функций изложено в разделе III.
2. Рассмотрим уравнение гиперболы: Его можно записать в параметрическом виде, используя гиперболические функции (этим и объясняется их название). Обозначим y= b·sht, тогда х2 / а2=1+sh2t =ch2t. Откуда x=± a·cht.
x= ± a ·cht,
Рис. 1. Знак ''+'' в верхней формуле (6) соответствует правой ветви гиперболы, а знак ''– '' - левой (см. рис. 1). Вершинам гиперболы А(– а; 0) и В(а; 0) соответствует значение параметра t=0.
.
2) (chx)'=shx (показывается аналогично). 4) Здесь так же прослеживается определенная аналогия с тригонометрическими функциями. Полная таблица производных всех гиперболических функций приведена в разделе IV. 6. Нетрудно вычислить вторые производные основных гиперболических функций: 1) 2) 3) 4) 7. Используя результаты п. 1-6, строим графики основных гиперболических функций:
Вопрос34. Числовая последовательность. Предел числовой последовательности (конечный и бесконечный). Геометрическая иллюстрация. Теорема о сходимости монотонной и ограниченной последовательности.
Последовательность — это пздц (набор) элементов некоторого множества: для каждого натурального числа можно указать элемент данного множества; это число является номером элемента и обозначает позицию данного элемента в последовательности; для любого элемента (члена) последовательности можно указать следующий за ним элемент последовательности. Таким образом, последовательность оказывается результатом последовательного выбора элементов заданного множества. И, если любой набор элементов является конечным, и говорят о выборке конечного объёма, то последовательность оказывается выборкой бесконечного объёма. Последовательность по своей природе — отображение, поэтому его не следует смешивать с множеством, которое «пробегает» последовательность. В математике рассматривается множество различных последовательностей: числовые последовательности; временные ряды как числовой, так и не числовой природы; последовательности элементов метрического пространства последовательности элементов функционального пространства последовательности состояний систем управления и автоматов. Целью изучения всевозможных последовательностей является поиск закономерностей, прогноз будущих состояний и генерация последовательностей. Определение Пусть задано некоторое множество X элементов произвольной природы. Всякое отображение из множества натуральных чисел в заданное множество X называется последовательностью (элементов множества X). Образ натурального числа n, а именно, элемент xn = f (n), называется n -ым членом или элементом последовательности, а порядковый номер члена последовательности — её индексом. Связанные определения Подмножество множества X, которое образовано элементами последовательности, называется носителем последовательности: пока индекс пробегает множество натуральных чисел, точка, «изображающая» последовательность, «перемещается» по носителю. Если взять возрастающую последовательность натуральных чисел, то её можно рассматривать как последовательность индексов некоторой последовательности: если взять элементы исходной последовательности с соответствующими индексами (взятыми из возрастающей последовательности натуральных чисел), то можно снова получить последовательность, которая называется подпоследовательностью заданной последовательности.
Предел числовой последовательности — предел последовательности элементов числового пространства. Числовое пространство — это метрическое пространство, расстояние в котором определяется как модуль разности между элементами. Поэтому, предел числовой последовательности — это такое число, что для всякой сколь угодно малой величины существует номер, начиная с которого уклонение членов последовательности от данной точки становится меньше заранее заданной величины. Понятие предела последовательности вещественных чисел формулируется совсем просто, а в случае комплексных чисел существование предела последовательности равносильно существованию пределов соответствующих последовательностей вещественных и мнимых частей комплексных чисел. Предел (числовой последовательности) — одно из основных понятий математического анализа. Каждое вещественное число может быть представлено как предел последовательности приближений к нужному значению. Система счисления предоставляет такую последовательность уточнений. Целые и рациональные числа описываются периодическими последовательностями приближений, в то время как иррациональные числа описываются непериодическими последовательностями приближений. [1] В численных методах, где используется представление чисел с конечным числом знаков, особую роль играет выбор системы приближений. Критерием качества системы приближений является скорость сходимости. В этом отношении, оказываются эффективными представления чисел в виде цепных дробей.
|