Fe 3d^6 4s^2
1.Устойчивые степени окисления: Fe – (+2), +3, (+6). Сравнивая электродные потенциалы перехода из со +3 в со +2 у Fe (0,72) и Co (1,92) делаем вывод, что Fe(III) более устойчив, чем Fe(II). 2.Взаимодействие с кислотами HCl, H2SO4 (разб): M + 2H^+ = M^2+ + H2 HNO3 (разб 30%): Fe + 4HNO3 = Fe(NO3)3 + NO + 2H2O; HNO3(k), H2SO4(k): на холоде пассивируются, при нагревании: Fe + 6HNO3 = Fe(NO3)3 + 3NO2 + 3H2O; Взаимодействие с щелочами – не реагируют. 3.Коррозия — это самопроизвольное разрушение металлов в результате химического или физико-химического взаимодействия с окружающей средой. Железо – металл средней химической активности (во влажном воздухе легко окисляется): 4Fe + 6H2O + 3O2 = 4Fe(OH)3; Fe^3+ + 3e = Fe (E = -0,12); Cu^2+ + 2e = Cu (E = 0,31) Cu – окислитель, поэтому он усиливает коррозию, Zn^2+ + 2e = Zn (E = 0,76) Zn – восстановитель, поэтому он ослабляет коррозию. 4.Соединения со +2. Оксид FeО – тугоплавкий, не растворим в воде и щелочах, но реагирует с кислотами проявляя основные свойства: FeО + 2Н^+ = Fe^2+ + H2 Гидроксиды Fe(ОН)2 получают: Fe^2+ + 2OH^- = Fe(OH)2 это не очень слабый электролит, его соли слабо гидролизуются; он проявляют основные ствойства в реакциях нейтрализации с кислотами. Восстановительная способность от железа к никелю уменьшается: Fe(OH)2(белый)+ O2 (воздуха) = Fe(OH)3 (бурый); Co(OH)2 (розовый) + H2O2 = Co(OH)3 (бурый); Ni(OH)2 (зеленый) + Br2 + OH^- = Ni(OH)3 (черный). Соединения со +3. Fe(OH)3. Основные свойства: Fe(OH)3 + 3H^+ = Fe^3+ + 3H2O; кислотные свойства: Fe(OH)3 + xOH^- = [Fe(OH)3+x]^-x+3 (условия: нагревание, концентрир. Щелочь соединения Fe(III) проявляют окислительные свойства. 5.в нейтральных растворах соли железа (3) гидролизуются в заметной степени 6.Биологическая роль: железо присутствует в организмах всех растений и животных как микроэлемент, то есть в очень малых количествах (в среднем около 0,02%). Большая часть его является главным действующим элементом гемоглобина крови(участие в транспорте кислорода), остальное входит в состав ферментов других клеток, катализируя процессы дыханияв клетках. Недостаток железа проявляется как болезнь организма (хлороз у растений и анемия у животных).
43. Для железа (II) наиболее типично корд. Число 6. В водных растворах существуют катионные аквакомплексы. При выпаривании из водных растворов обычно образуются кристаллогидраты, например, Соль мора: (NH4)2Fe(SO4)2*6H2O. Производные анионных комплексов Fe(II) – ферраты в большинстве малостойки и напоминают двойные соли. Наиболее устойчив цианидный комплекс [Fe(CN)6]^4-. Желтая кровяная соль K4[Fe(CN)6] используют для обаружения Fe^3+: FeCl3 + K4[Fe(CN)6] = KFe[Fe(CN)6] + 3KCl. Получившееся вещество – берлинская лазурь. Корд.число Fe(III) равно 6 и 4. Анионные комплексы Fe(III) устойчивее и легче образуются, чем таковые для Fe(II). Так, свежеполученный Fe(OH)3 заметно растворяется в концентрированных щелочах образуя гексагидроксоферраты типа M3[Fe(OH)6]. Особо устойчив гексацианоферрат (III) – ион [Fe(CN)6]^3-. Наибольшее значение из цианоферратов (III) имеет K3[Fe(CN)6] – красная кровяная соль. Она в частности является реактивом на ионы Fe^2+, дает с ними интенсивно-синий гексацианоферрат (III) калия-железа (II) (турнбуллева синь): FeCl2+ K3[Fe(CN)6] = KFe[Fe(CN)6] + 2KCl, как показали исследования, турнбуллева синь и берлинская лазурь полностью идентичны, их кристаллы образованы полиядерными ионами [Fe2(CN)6]^- и ионами K^+. У Co +2 устойчивые коодринац. Числа 6 и 4. Из катионных комплексов наиболее характеры ярко-розовые аквакомплексы [Co(H2O)6]^2+. Анионные комплексы Co (II) обычно тетраэдрические, окрашены в синий и фиолетовый цвета. образуются при взаимодействии соответствующих соединений Co с однотипными оснОвными соединениями. большинство призводных таких комплексов по устойчивости относятся к двойным солям. В СО +3 для Co характерны многочисленные катионные, анионные и нейтральные комплексы с корд.числом. Аквакомплексы нестабильны, так как являются сильными окислителями. Большинство комплексов никеля (II) имеет октаэдрическое строение. Устойчивыми являются аква- и аминокомплексы. За счет последних гидроксид никеля может растворяться в присутствии аммиака и солей аммония: Ni(OH)2 + 6NH3 = [Ni(NH3)6](OH)2 Влияние комплексообразования на устойчивость степени окисления +3 у железа и кобальта.
44. Cu, Ag, Au (n-1)d^10 ns^1 (должно быть 9 электронов, но 10 более устойчиво, поэтому происходит переход) 1.Свойства: радиус растет (у Ag и Au равны), энергия ионизации растет. Характерные степени окисления: у меди +2 (+1), у золота +3(+1), у серебра +1. Элементы могут образовывать как катионные так и анионные комплексы. По мере повышения ст.ок. тенденция к образованию анионных комплексов возрастает. Все растворимые соединения ядовиты. 2.Простые вещества. Медь, серебро и золото – металлы красного, белого и желтого цветов. T плавления растет в ряду Ag-Au-Cu, а кипения – Ag-Cu-Au. Химическая активность невелика и убывает с ростом порядкового номера (об этом свидетельствуют энергии гиббса образования их бинарных соединений). Легче всего реагируют с галогенами (Cu при обычной t, остальные при нагревании). С кислородом непосредственно реагирует только медь (CuO, Cu2O), с серой Cu и Ag. 3.Взаимодействие с кислотами: HCl, H2SO4 (разб) не реагируют HNO3 (разб и конц), H2SO4 (конц) при нагревании: 3Cu + 8HNO3 (разб) = 3Cu(NO3)2 + 2NO + 4H2O; Cu(Ag) + 2HNO3 (конц) = Cu(Ag)(NO3)3+ NO2 + H2O 4.Взаимодействие с комплексообразователями Сl^-: Au + HNO3 + 4HCl = H[AuCl4] + NO + 2H2O CN^-: 4Au(Cu,Ag) + 8NaCN + 2H2O + O2 = 4Na[Au(Cu,Ag)(CN)2] + 4NaOH NH3: 2Cu + 8NH3 + 2H2O + O2 = 2[Cu(NH3)4](OH)2 5.Соединения Cu СО +1. Cu2O, Cu2S, растворимость в ряду CuCl, CuBr, CuI уменьшается, а устойчивость увеличивается. СО +2. Соединения проявляют кислотные: CuO(Cu(OH)2) + 2H^+ = Cu^2+ + H2O; и основные свойства: Cu(OH)2 + 2OH^-(конц) = [Cu(OH)4]^2. Значит Cu(OH)2 амфотерен с преобладанием основных свойств. Растворимые соли меди(2) гидролизуются (CuCl2, CuBr2, CuSO4, Cu(NO3)2). СuS, CuCO3, Cu3(PO4)2 – не растворимы, CuI2 – не существует. Соединения AgCO +1. Ag2O – не растворим. Гидроксид не сушествует: 2AgNO3 + 2KOH = Ag2O + 2HNO3 + H2O. Кислотные свойства: Ag2O +2HNO3 (разб) = 2AgNO3 + H2O; основные свойства: Ag2O + 2OH^- = 2[Ag(OH)2]^-. Серебро способно образовывать и катионные комплексы: Ag2O + 4NH3 + H2O = 2[Ag(NH3)2]^+ + 2OH^-. Соли серебра не гидролизуются, плохо растворимы (кроме AgF, AgNO3) 6.Биологическая роль: Медь является необходимым элементом для всех высших растений и животных. Медь встречается в большом количестве ферментов. В крови большинства моллюсков и членистоногих медь используется вместо железа для транспорта кислорода. Некоторые соединения меди могут быть токсичны при превышении ПДК в пище и воде.
45. Zn, Cd, Hg (n-1)d^10 ns^2 Т.к. завершена d орбиталь, они отличаются от остальных d-элементов и похожи на p-элементы больших периодов. 1. Свойства: радиус растет вниз, энергия ионизации растет, устойчивые степени окисления: +2 (у Hg еще и +1). Электроны с d-орбиталей способны к участию в донорно-акцепторном взаимодействии. При этом в ряду донорная способность возрастает. Поэтому их ионы проявляют ярко выраженную тенденцию к образованию комплексных соединений. Высокая устойчивость 6s^2-электронной пары накладывает отпечаток на все свойства ртути и обуславливает ее существенное отличие от цинка и кадмия. В частности, в противоположность соединениям Zn и Cd большинство соединений ртути мало устойчивы. Далее, в отличие от цинка и кадмия для ртути характерны производные радикала Hg2^2+ (в нем атомы соединены ковалентной связью). В этих производных ст.ок. ртути +1. 2. Простые вещества: в виде простых веществ это серебристо-белые металлы. Но во влажном воздухе постепенно покрываются пленками оксидов и теряют блеск. Все три достаточно легкоплавки. Свойства: t плавления уменьшается, t кипения уменьшается. По химической активности уступают щелочно-земельным металлам. При этом с ростом атомной массы химич. Активность понижается. 3. Взаимодействие с кислотами HCl, H2SO4(разб): Zn(Cd) + 2H^+ = Zn(Cd)^2+ + H2; Hg – не реагирует HNO3 (конц), H2SO4 (конц): Zn + H2SO4 = Zn^2+ + S; Zn + HNO3 = Zn^2+ + NH3; Hg + H2SO4 = Hg^2+ + SO2; Hg + HNO3(конц) = Hg^2+ +NO; 6Hg + 8HNO3(разб) = 3Hg2(NO3)2 + 2NO + 4H2O 4. взаимодействие с щелочами: Zn + 2OH^- + 2H2O = [Zn(OH)4]^2- + H2 5. соединения Zn: ZnO, Zn(OH)2 – амфотерные соединения: основные - (ZnO)Zn(OH)2 + 2H^+ = Zn^2+ + 2H2O; кислотные – (ZnO)Zn(OH)2 + 2OH^- = [Zn(OH)4]^2-Cd: CdO, Cd(OH)2 – более оснОвные: (CdO)Cd(OH)2 + 2OH^- = [Zn(OH)4]^2-Hg: HgO, Hg20 – проявляют только основные свойства, гидроксидов не существует. Hg2Cl2 – каломель, HgCl2 – сулема. 6. экологическая роль Кадмий: кадмий, и все его соединения токсичны, что связано, в частности, с его способностью связывать серосодержащие ферменты и аминокислоты. Кадмий —способен накапливаться в организме. Растворимые соединения кадмия после всасывания в кровь поражают центральную нервную систему, печень и почки, нарушают фосфорно-кальциевый обмен. Хроническое отравление приводит к анемии и разрушению костей. Ртуть: Хлорид ртути (I), который называется каломель, используется в пиротехнике, а также в качестве фунгицида. В ряде стран каломель используется в качестве слабительного. Токсическое действие каломели проявляется особенно тогда, когда после приема её внутрь не наступает слабительное действие и организм долгое время не освобождается от этого препарата. Хлорид ртути (II), который называется сулема, является очень токсичным. Сулема применялась в медицине как дезинфицирующее средство, в технике она используется для обработки дерева, получения некоторых видов чернил, травления и чернения стали. Пары? ртути, а также металлическая ртуть очень ядовиты, могут вызвать тяжёлое отравление. Ртуть и её соединения (сулема, каломель, цианид ртути) поражают нервную систему, печень, почки, желудочно-кишечный тракт, при вдыхании - дыхательные пути (а проникновение ртути в организм чаще происходит именно при вдыхании её паров, не имеющих запаха). По классу опасности ртуть относится к первому классу (чрезвычайно опасное химическое вещество). Опасный загрязнитель окружающей среды, особенно опасны выбросы в воду, поскольку в результате деятельности населяющих дно микроорганизмов происходит образованием растворимой в воде и токсичной метилртути.
|