Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Свойства кривых безразличия





Отметим свойства кривых безразличия:

1) Кривая безразличия имеет отрицательный наклон, то есть проходит вниз слева направо.

Доказательство: предположим противное, то есть, что кривая безразличия идет вверх слева направо. Значит каждый набор, соответствующий точке, расположенной на кривой выше, будет содержать большее количество каждого блага, чем нижний. Это противоречит предположению 3.

Для описания предпочтений индивида по всем наборам благ Х и Y, используют изображение семейства кривых безразличия, которое называется картой безразличия (рис. 4-3):

Рис. 4-3. Карта безразличия

На графике изображены четыре кривых безразличия, которые представляют часть карты безразличия. Кривая I4 соответствует наивысшему уровню удовлетворения, следуя за кривыми I3, I2, I1.

2) Кривые безразличия не могут пересечься (доказать самостоятельно).

3) Кривая безразличия может быть проведена через каждую точку в пространстве благ (это следует из предположения 1)

4)
Кривые безразличия выпуклы к началу координат.

Рассмотрим одну из кривых безразличия (рис. 4-4):

Рис. 4-4. Выпуклость кривой безразличия к началу координат

Пусть отрезок х1х2 равен отрезку х3х4, тогда при переходе из точки А в точку В потребитель сохранил общую полезность набора благ при увеличении потребления блага Х на Dх1 и уменьшении потребления блага Y на Dу1. При переходе из С в D потребитель сохранил общую полезность при увеличении потребления блага Х на Dх2 = Dх1 и уменьшении потребления блага Y на Dу2, при этом Dу1 > Dу2.







Дата добавления: 2015-12-04; просмотров: 233. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Studopedia.info - Студопедия - 2014-2026 год . (0.01 сек.) русская версия | украинская версия