Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Логарифмическая функция





Функция вида y = loga х (где а > 0, а ≠ 1) называется логарифмической.

1) Область определения логарифмической функции — множество всех положительных чисел.
Это следует из определения логарифма, так как выражение logax имеет смысл только при x > 0.

2) Множество значений логарифмической функции — множество R всех действительных чисел.
Это следует из того, что для любого действительного числа b есть такое положительное число x, что logax = b, т.е. уравнение logax = b имеет корень. Такой корень существует и равен x = ab, так как logaab = b.

3) Логарифмическая функция y = logax является возрастающей на промежутке x > 0, если a > 0, и убывающей, если 0 < a < 1.

4) Если a > 0, то функция y = logax принимает положительные значения при x > 1, отрицательные — при 0 < x < 1. Если 0 < a < 1, то функция y = logax принимает положительные значения при 0 < x < 1, отрицательные — при x > 1.
Это следует из того, что функция y = logax принимает значение, равное нулю, при x = 1 и является возрастающей на промежутке x > 0, если a > 1, и убывающей, если 0 > a > 1.

Ниже представлены графики логарифмических функций при a > 0 (1); 0 > a >1 (2).

 

 

График любой логарифмической функции

y = logax проходит через точку (1; 0)

 

2. Объем конуса: Конус(геометрическая фигура, образованная вращением прямоугольного треугольника вокруг одного из катетов)
 
Объем конуса вычисляется по формуле где R — радиус основания конуса, H -- его высота π=3,14   Билет № 20 1. Число е, Производная функции y = . e — математическая константа, основание натурального логарифма, трансцендентное число. Иногда число e называют числом Эйлера или числом Непера. Обозначается строчной латинской буквой «e». Число e играет важную роль в дифференциальном и интегральном исчислении. Производная функции y = .   2. Объем цилиндра. Цилиндр -геометрическое тело, ограниченной замкнутой боковой поверхностью и двумя пересекающими ее поверхностями (основаниями) h- высота цилиндра r- радиус основания π ≅3,14 Объем цилиндра, (V): Билет № 21 1. Производная степенной функции. Произво́дная (функции в точке) — основное понятие дифференциального исчисления, характеризующее скорость изменения функции (в данной точке). Определяется как предел отношения приращения функции к приращению ее аргумента при стремлении приращения аргумента к нулю, если такой предел существует. Функцию, имеющую конечную производную (в некоторой точке), называют дифференцируемой (в данной точке). Процесс вычисления производной называется дифференци́рованием. Обратный процесс — нахождение первообразной — интегрирование Степенная функция — это функция вида y = x p, где p — заданное действительное число. Если f(x) = xp, где p - действительное число, то является отрицательным числом, т.е. f(x) = x−p, то     2. Площадь круга. Круг - это геометрическая фигура, которая ограничена окружностью. Зная диаметр или радиус круга, можно найти его площадь. r - радиус круга D - диаметр π≈3.14 Формула площади круга, (S):






Дата добавления: 2015-12-04; просмотров: 237. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия