Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Декартовые координаты в пространстве.





Прямые x, y, z называются координатными осями (или осями координат),
точка их пересечения O – началом координат,
а плоскости xOy, xOz и yOz – координатными плоскостями.
Точка O разбивает каждую координатную ось на две полупрямые, которые называются положительной и отрицательной полуосями.

 

Билет № 8

Производная тригонометрических функций.

Для нахождения производных от тригонометрических функций применяют следующие правила дифференцирования:
(sin x)' = cos x
(cos x)' = -sin x
(tg x)' = 1/ cos2x = 1 + tg2 x
(ctg x)' = - 1/ sin2x = -(1 + ctg2 x)
(arctg x)' = 1 / (1 + x2)
(arcctg x)' = -1 / (1 + x2)

2. Расстояние между точками в пространстве.

 

Есть две произвольные точки A1(x1;y1;z1) и A2(x2;y2;z2)
Тогда расстояние между точками A1 и A2 вычисляется так:

Билет № 9

1. Первообразные.

Функция F(x) называется первообразной функцией для данной функции f(x), если для любого x из области определения f(x) выполняется равенство F'(x)= f(x) или dF(x)= f(x)dx

 

 

Пример 1. Найти производную функции .

Решение:

.

Ответ: .

 

Пример 2. Найти , если .

Решение:

По правилу дифференцирования дроби имеем:.

.

Ответ:

 

Пример 3. Чему равен тангенс угла наклона касательной к графику функции у = х2 + 2, в точке хо = – 1.

Решение:

Тангенс угла наклона касательной к графику функции есть значение производной данной функции в точке хо.

.

Ответ: – 2.

 







Дата добавления: 2015-12-04; просмотров: 153. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия