Виды и формы взаимосвязей между явлениями.
Существует два вида связи между факторами и результативными признаками: Функциональная связь Корреляционная связь При функциональной связи каждому значению величины факторного признака соответствует только одно значение результативного признака. Функциональные связи обычно выражаются формулами и исследуются в математике и физике. Пример, площадь круга — результативный признак — прямо пропорциональна его радиусу — факторный признак. Однако, функциональные связи имеют место и в экономике. Пример, заработная плата рабочего повременной оплате равна произведению часовой тарифной ставки на число отработанных часов. Функциональная связь является точной и полной, т.к. обычно известны все факторы, оказывающие влияние на результативный признак. При функциональных связях величина результативного признака полностью показывается факторными признаками. Однако, в массовых явлениях общественной жизни в виду крайнего разнообразия факторов и их взаимосвязи и противоречивого действия этих факторов, не поддающихся строгому учету и контролю, возникает широкое варьирование результативного признака. Это свидетельствует о том, что связь между признаками неполная, а проявляется лишь в общем и среднем. Такие связи называются корреляционными. При корреляционной связи под влиянием изменения многих факторных признаков (ряд из которых может быть неизвестен), меняется средняя величина результативного признака. Пример, корреляционная связь между влиянием удобрения и урожайностью культур, между производительностью и энергооснощенностью предприятия. Важная особенность корреляционных связей состоит в том, что они обнаруживаются не в отдельных случаях, а в массовых общественных явлениях. Методы измерения корреляционных взаимосвязей. Корреляционные или статистические связи, при которых численному значению одной переменной соответствует много значений другой переменной. Пример, между ростом и весом детей существует бесспорная зависимость, но это не значит, что определенному росту строго соответствует определенный вес. В силу участия в формировании веса многих других факторов, каждому значению роста соответствует несколько значений веса, которые могут быть выражены в виде распределения. Функциональная связь имеет место по отношению к каждому конкретному наблюдению. Корреляционная проявляется в среднем для всей совокупности наблюдений. выявления взаимодействия факторов, определение силы и направленности Практическое использование корреляционного анализа: выявление взаимодействия факторов, определение силы и направления влияния одних факторов на другие. Следует подчеркнуть, что определение наличия связи между явлениями и факторами - дело специалистов. Статистика лишь измеряет эту связь. Корреляционная зависимость отличается по форме связи, ее направлению и силе. Ориентировочное представление о характере зависимости между двумя изученными факторами дает графический анализ (так называемая «скэттер-диаграмма»), который позволяет рассмотреть концентрацию и рассеивание точек на пересечении координат изучаемых признаков в определенном направлении вокруг линии регрессии. Форма связи может быть прямолинейной и криволинейной. Прямолинейная связь - равномерные изменения одного признака соответствуют равномерным изменениям второго признака при незначительных отклонениях. Криволинейная связь - равномерные изменения одного признака соответствуют неравномерным изменениям второго признака. Направление связи может быть прямое (положительное) или обратное (отрицательное). Если с увеличением одного признака второй также увеличивается или с уменьшением одного другой тоже уменьшается, зависимость прямая, положительная. Если с увеличением одного признака другой уменьшается или с уменьшением первого признака второй увеличивается, зависимость обратная, отрицательная.
|