Студопедия — Иммобилизованные ферменты
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Иммобилизованные ферменты

Иммобилизованные ферменты

(от лат. immobiiis - неподвижный), препараты ферментов, молекулы которых связаны с матрицей, или носителем (как правило, полимером), сохраняя при этом полностью или частично свои каталитич. свойства. иммобилизованные ферменты обычно не раств. в воде. между двумя фазами возможен обмен молекулами субстрата, продуктов каталитич. реакции, ингибиторов и активаторов. Существует неск. осн. способов иммобилизации ферментов: 1) путем образования ковалентных связей между ферментом и матрицей; 2) полимеризацией мономера. образующего матрицу, в присутствии фермента, который при этом оказывается включенным в сетку полимера - обычногеля. 3) благодаря электростатич. взаимод. противоположно заряженных групп фермента и матрицы; 4)сополимеризацией фермента и мономера. образующего матрицу; 5) связыванием фермента и матрицы в результате невалентных взаимод. - гидрофобных, с образованием водородных связей и др.; 6) инкапсулированием - созданием около молекул фермента полупроницаемой капсулы, например, включением фермента в липосомы. 7) сшиванием молекул фермента между собой, например, глутаровым альдегидом. диметиловым эфиром диимида адипиновой кислоты. Особый случай иммобилизации проведение ферментативных реакций в двухфазной системе, когда фермент находится в водной фазе, а субстраты и продукты реакции распределяются между орг. и водной фазами, что позволяет в зависимости от коэф. распределения веществ между фазами сдвигать равновесие реакции в нужную сторону;диспергирование фаз увеличивает пов-сть их раздела и тем самым улучшает доступ субстрата к ферменту. Среди способов иммобилизации наиб. распространение получили ковалентное связывание фермента с матрицей и включение фермента в гель. В первом случае в качестве матрицы обычно используют целлюлозу, декстрановые гели (сефароэу, агарозу), микропористые стекла или кремнеземы, а также синтетич. полимеры. Матрицу при ковалентной иммобилизации ферментов обычно предварительно активируют, обрабатывая, например, бромцианом, азотистой кислотой или цианурхлоридом. Благодаря этому она становится носителем активных группировок, которые способны вступать в реакцию сочетания, взаимод. с группами NH2, ОН, СООН. Во втором случае в качестве гелеобразующегополимера используют полиакриламид. На практике иммобилизация часто осуществляется одновременно неск. способами. Так, при фиксации ферментов ковалентными связями между их молекулами и матрицей обычно возникают также нековалентные взаимодействия. Известны способы предварит. хим. модификации молекул фермента низкомол. веществами или растворимыми полимерами, имеющими заряженные группировки, что изменяет у таких модифицир. белков электростатич. заряд молекулы и позволяет достаточно прочно сорбировать их на ионообменных смолах. При всех типах иммобилизации матрица, взаимодействуя с ферментом, может инактивировать последний или создавать пространств. затруднения для доступа субстрата к активному центру. При ковалентном связывании фермента для предотвращения отрицат. влияния матрицы между ней и молекулой фермента вводят разобщающую цепь атомов - спейсер (наз. также "вставкой" или "ножкой"). Кроме того, часто стремятся использовать для иммобилизации гидрофильные матрицы, создающие вблизи фермента более естеств. микроокружение. При иммобилизации ферментовнеобходимо, чтобы активные группы матрицы не блокировали каталитич. центр фермента, а условия иммобилизации не приводили к потере его активности. Определенные ограничения на способ иммобилизации налагают и особенности

20.

смолами и обесцвечивают активированным углем. Далее сироп уваривают при 60 ºС (при более высоких температурах фруктоза рагзлагается) в выпарных аппаратах пленочного типа до содержания СВ 71…74 %, охлаждают до 30 ºС и хранят при 25…30 ºС, так как при температуре ниже 25 ºС начинается кристаллизация глюкозы, а при температуре выше 30 ºС нарастает цветность сиропа из-за разложения моносахаридов.

Глюкозно-фруктозные сиропы находят широкое применение при производстве детского и диетического питания, хлебобулочных изделий, кремов, тортов, пирожных, джемов, помадки, зефира, пастилы.

По своим свойствам такие сиропы близки к инвертному. Из-за большого содержания моносахаридов, особенно фруктозы, использование сиропов позволяет получать кондитерские изделия повышенного качества: они долго остаются свежими и не засыхают. Хлебобулочные изделия, приготовленные на глюкозно-фруктозном сиропе, имеют лучшую окраску корки и более длительный срок сохранения свежести. Сироп с содержанием фруктозы 90 % позволяет получать пищевые продукты пониженной энергетической ценности благодаря снижению содержания сахара в рецептуре изделий за счет более сладкого вкуса сиропа.

 

2 АКТИВНЫЙ ЦЕНТР ФЕРМЕНТОВ Каталитическая функция ферментов определяется наличием одного или нескольких активных центров. Активный центр – это участок в пространственного структуре фермента, с которым связывается субстрат и подвергается химическому превращению. Число активных центров может быть равно числу субъединиц в четвертичной структуре фермента, т.е. сколько субъединиц (протомеров), столько активных центров. В активном центре условно выделяют два участка: - контактный (якорный или субстратный), отвечающий за специфичность связывания субстрата (узнавание); - каталитический, где происходит химическое превращение субстрата после его связывание (сначала фермент узнает субстрат, притягивает его, затем субстрат располагается в этом активном центре. Структурная организация фермента 1. Особенности образования активного центра у ферментов протеинов (простых белковых ферментов). Обычно он образован 12-16 аминокислотными остатками полипептидной цепи. Иногда их число больше. Аминокислоты, формирующие активный центр, находятся в разных местах полипептидной цепи. При пространственной укладки белка-фермента (в третичную структуру), они сближаются и образуют активный центра. Приблизительно 1/2 – 1/3 аминокислот фермента прямо или косвенно участвуют в работе активного центра. 2.Особенности образования активного центра у ферментов-протеидов (сложных белков-ферментов). Протеиды состоят из: Апофермент (белковая часть) + кофактор (небелковая часть) = холофермент (активный комплекс). Кофактор (или простетическая группа) чаще всего предствавлен витаминами или ионами металлов. Холофермент в диссоциированном состоянии неактивен.   При низкой температуре происходит обратимая инактивация фермента, т.к. наблюдаются незначительные изменения конформации активного центра фермента. Фермент имеет белковую природу, поэтому температура на него, влияет также как на белок (повышении температуры приводит к денатурации).   3 НОМЕНКЛАТУРА И КЛАССИФИКАЦИЯ ФЕРМЕНТОВ Каждый фермент имеет 2 названия. Первое - короткое, так называемое рабочее, удобное для повседневного использования. Второе (более полное) - систематическое, применяемое для однозначной идентификации фермента. А. Рабочее названиеВ названии большинства ферментов содержится суффикс "аза", присоединённый к названию субстрата реакции, например уреаза, сахараза, липаза, нуклеаза или к названию химического превращения определённого субстрата, например лактатдегидрогеназа, аденилатциклаза, фосфо-глюкомутаза, пируваткарбоксилаза.     8 ВЛИЯНИЕ ТЕМПЕРАТУРЫ НА АКТИВНОСТЬ ФЕРМЕНТОВ Ферменты обладают всеми свойствами белков. Однако по сравнению с белками, выполняющими другие функции в клетке, ферменты имеют ряд специфических, присущих только им свойств. Зависимость активности ферментов от температуры.Температура может влиять по-разному на активность фермента. При высоких значениях температуры может происходить денатурация белковой части фермента, что негативно сказывается на его активности. При определенных (оптимальных) значениях температура может влиять на скорость образования фермент-субстратного комплекса, вызывая увеличение скорости реакции. Температура, при которой каталитическая активность фермента максимальна, называется температурным оптимумом фермента. Различные клеточные ферменты имеют собственные температурные оптимумы, которые определяются экспериментально. Для ферментов животного происхождения температурный оптимум находится в интервале 40 - 50°С Установлено, что скорость ферментативных реакций при изменении температуры инкубации на 10 °С изменяется в 2 раза. Например, активность АСТ в сыворотке фирмы Randox, определённая при 37 °С, составляет 35 U/л, а при 25 °C – 16 U/л. При дальнейшем понижении температуры реакционной смеси скорость реакции будет снижаться: при 15 °С активность АСТ равна 8 U/л, при 5 °С — 4 U/л. Поэтому определение активности ферментов необходимо всегда проводить при температуре, указанной в инструкции по использованию набора.   Температура, при которой наблюдается максимальная активность ферментов, называется оптимальной. Для большинства ферментовоптимальной температурой является температура от +35С — +45С. Если фермент поместить в условия, ниже оптимальной температуры, будет происходить снижение его активности, такое состояние называется обратимой инактивацией фермента, т.к. если вновь поднять температуру до оптимальной, активность фермента возобновится. Если поместить фермент в условия, где температура будет выше оптимальной, то также будет прроисходить снижение его активности, но в данном случае необратимая инактивация, т.к. если понизить температуру до оптимальной, активность фермента не возобновится. Это объясняется тем, что высокая температура вызывает денатурацию молекулы фермента.   13. ТЕХНОЛОГИЯ КУЛЬТИВИРОВАНИЯ МИКРООРГАНИЗМОВ Производство ферментных препаратов микробного происхождения может осуществляться поверхностным и глубинным методами. Поверхностный метод заключается в культивировании микроорганизмов на поверхности увлажненной стерилизованной сыпучей питательной среды, размещенной в кюветах. Инкубацию микроорганизмов ведут в специальном термостатируемом цехе при постоянном контроле в нем температуры, влажности и расхода воздуха. Основные параметры поверхностного способа получения ферментов приведены на слайде. Для выращивания продуцентов ферментов глубинным методом в промышленных условиях используют ферментаторы из нержавеющей стали, снабженные устройствами для перемешивания и подачи в жидкую питательную среду стерильного воздуха. Глубинный способ ведения процесса имеет ряд существенных преимуществ перед поверхностным культивированием, т. к. позволяет существенно автоматизировать процесс, в ряде случаев значительно сократить объёмы отходов, проводить процесс непрерывно, сократить в 2 – 4 раза площади цехов, а также позволяет использовать анаэробных продуцентов. Сначала ферментатор заполняют питательной средой, стерилизуют ее, затем засевают чистой культурой, подаваемой из специального генератора. Для предотвращения инфицирования в ферментере поддерживают повышенное давление наряду с оптимальными значениями рН, температуры, окислительно-восстановительного потенциала и другими условиями культивирования. Основные параметры глубинного способа получения ферментов приведены на слайде. Культура микроорганизмов, выращенная поверхностным способом, и культуральная жидкость после глубинного культивирования содержат большое количество балластных веществ. Выделение и очистка ферментов – трудоёмкий и дорогостоящий процесс поэтому, если ферментный препарат можно использовать в виде неочищенной культуры микроорганизмов, его очистку не проводят. В таких отраслях, как спиртовая и кожевенная, целесообразнее использовать именно неочищенную культуру микроорганизма; то же самое можно сказать и об использовании культур микроорганизмов в сельском хозяйстве при приготовлении комбикормов и при непосредственной обработке кормов на фермах. В большинстве отраслей пищевой промышленности (хлебопекарной, пивоварении, виноделии, сыроделии, крахмало-паточном и сокоэкстрактном производствах), а также в микробиологической промышленности и особенно медицине можно использовать только очищенные препараты ферментов, частично или полностью освобожденные от балластных веществ. Исходным материалом для получения очищенных ферментных препаратов может служить фильтрат культуральной жидкости, реже – биомасса продуцента или водный экстракт из поверхностной культуры продуцента. Ферментные препараты могут быть получены в виде порошков или жидких концентратов. В процессе выделения происходит повышение доли активного белка в общей массе препарата, т. е. увеличивается его удельная активность. Из нее ясно, что экстракт из поверхностной культуры или фильтрат культуральной жидкости является исходным материалом для получения препаратов     субстрата. Так, в случае высокомол. субстратов нельзя использовать методы инкапсулирования или включения фермента в гель. Если матрица несет на себе заряды, то заряд субстрата влияет на кинетич. параметры реакции: разноименные заряды на носителе и субстрате увеличивают скорость реакции, катализируемой иммобилизованные ферменты, одноименные заряды ее снижают и м. б. причиной полной потери активности препарата. Заряды носителя и субстрата влияют также на величину рН, при которой скорость ферментативной реакции максимальна. Важную роль играет распределение субстрата между фазами иммобилизованного фермента и раствора. Ограниченная доступность субстрата к активному центру фермента может привести к изменению специфичности последнего. Особенно это Характерно для высокомол. субстратов, которые из-за малого коэф. диффузии медленно переходят в фазу иммобилизованные ферменты, что приводит к относит. увеличению скоростей др. реакций с участием субстратов меньших размеров. В некоторых случаях возможно также изменение направления реакции. Так, фермент эндополигалактуроназа, катализирующий расщепление полигалактуроновой кислоты в середине молекулы, после иммобилизации отщепляет низкомол. фрагменты от концов молекулы. Существ. влияние на кинетику реакций, катализируемых иммобилизованными ферментами, оказывают два диффузионных барьера - внешний и внутренний.   16. Физические методы иммобилизации Нерастворимые носители Фермент можно адсорбировать на твердом носителе за счет электростатических, гидрофобных или водородных связей. Именно с физической адсорбции началась в 1916 г. история иммобилизованных ферментов. Этот метод до сих пор используется во многих отраслях промышленности. Удастся ли белку прочно прикрепиться к носителю, зависит от двух особенностей этого носителя: удельной поверхности и количества пор. Чем больше удельная поверхность, тем больше «посадочных мест» для белка; чем лучше развиты поры, тем ему легче закрепиться. Водный раствор фермента просто помещают на подложку, либо смешивают с частицами носителя, или пропускают через заполненные носителем колонки. Например, осадок гидроксида титана заливают раствором фермента, перемешивают и сушат. При этом каждый грамм осадка впитывает не менее 64 мг белка. Физическая адсорбция хороша тем, что полностью сохраняет активность фермента – ведь молекула его не образует новых химических связей, а значит не изменяется. Оборотной стороной этого достоинства является невысокая прочность прикрепления белка. Он сравнительно легко отрывается от поверхности, что приводит не только к потере самого фермента, но и к загрязнению продуктов реакции. Прочность повышают, заранее обрабатывая носитель ионами металлов, полимерами, гидрофобными соединениями, покрывая его слоем белка или липида. Можно обработать и сам фермент, но это снижает его активность. Носители:кремнезем, активированный уголь, графитовая сажа, различные глины, пористое стекло, полисахариды, синтетичес­кие полимеры, оксиды алюминия, титана и других металлов, целлюлоза, декстрановые гели (сефароза, агароза).   Гели Самый простой способ иммобилизовать фермент – включить его в трехмерную матрицу геля. Этот способ подходит не только для отдельных ферментов, но и для их комплексов и даже целых клеток. 22. Классификация носителей для ферментов Для получения иммобилизованных ферментов используется ограниченное число как органических, так и неорганических носителей. К носителям предъявляются следующие требования (Дж.Порат, 1974):- -высокая химическая и биологическая стойкость; - -высокая химическая прочность; -достаточная проницаемость для фермента и субстратов, пористость, большая удельная поверхность; -возможность получения в виде удобных в технологическом отношении форм (гранул, мембран); -легкая активация; -высокая гидрофильность; -невысокая стоимость. Классификация носителей 1)органические (низкомолекулярные и полимерные) 2)Не органические (макропористые и другие) Следует отметить, что органические носители (как низко-, так и высокомолекулярные) могут быть природного или синтетического происхождения. Природные полимерные органические носители делят в соответствии с их биохимической классификацией на 3 группы: полисахаридные, белковые и липидные. Синтетические полимеры также можно разделить на группы в связи с химическим строением основной цепи макромолекул: полиметиленовые, полиамидные, полиэфирные. Для иммобилизации ферментов наиболее широко используются природные полисахариды и синтетические носители полиметильного типа, остальные применяются значительно реже. Большое значение природных полимеров в качестве носителей для иммобилизации объясняется их доступностью и наличием реакционно-способных функциональных групп, легко вступающих в химические реакции. Характерной особенностью этой группы носителей также является их высокая гидрофильность. Недостаток природных полимеров - неустойчивость к воздействию микроорганизмов и довольно высокая стоимость. Наиболее часто для иммобилизации используются такие полисахариды, как целлюлоза, декстран, агароза и их производные. Целлюлоза гидрофильна, имеет много гидроксильных групп, что позволяет модифицировать её, замещая эти группы. Для увеличения механической прочности целлюлозу гранулируют путем частичного гидролиза, в результате которого разрушаются аморфные участки. На их место для сохранения пористости между кристаллическими участками вводят химические сшивки. Гранулированную целлюлозу довольно легко превратить в различные ионообменные производные, такие как ДЭАЭ-целлюлоза, КМЦ и т.д. Широко распространены носители на основе декстрана, выпускаемые под названием "сефадексы". При высушивании они легко сжимаются, в водном растворе сильно набухают. В этих носителях размер пор в геле регулируется степенью сшитости. К группе декстранов относят и крахмал. Химически модифицированный крахмал сшивается агентами, такими как формальдегид. Таким способом был получен губчатый крахмал, обладающий повышенной устойчивостью по отношению к ферментам, гидролизу. Водорастворимые препараты на основе декстрана часто применяются как носители лекарственных средств в медицине. Хорошим носителем считается агар. Его свойства улучшаются после химической сшивки, например, диэпоксидными соединениями. Такой агар становится устойчивым к нагреванию, прочен, легко модифицируется. Б. Классы ферментов Международный союз биохимии и молекулярной биологии в 1961 г. разработал систематическую номенклатуру, согласно которой все ферменты разбиты на 6 основных классов в зависимости от типа катализируемой химической реакции. Каждый класс состоит из многочисленных подклассов и подподклассов с учётом преобразуемой химической группы субстрата, донора и акцептора преобразуемых группировок, наличия дополнительных молекул и т.д. Каждый из 6 классов имеет свой порядковый номер, строго закреплённый за ним. Классификация ферментов.В настоящее время известно более 2000 ферментов. Все ферменты разделены на шесть классов, каждый из которых имеет строго определенный номер. Оксидоредуктазыкатализируют окислительно-восстановительные процессы. 1. Трансферазыкатализируют реакции переноса функциональных групп и молекулярных остатков с одной молекулы на другую. 2. Гидролазыкатализируют реакции гидролиза. 3. Лиазыкатализируют реакции отщепления (кроме атомов водорода) с образованием двойной связи либо присоединения по двойной связи, а также негидролитический распад органических соединений либо синтез без участия макроэргических веществ. 4. Изомеразыкатализируют процессы изменения геометрической или пространственной конфигурации молекул. Лигазыкатализируют реакции синтеза, сопровождающиеся гидролизом богатой энергией связи (как правило, АТФ   4 ХАРАКТЕРИСТИКА КЛАССА ОКСИДОРЕДУКТАЗ. ПРИМЕРЫ   Ферменты этого класса катализируют окислительно-восстановительные реакции, лежащие в основе биологического окисления. Класс насчитывает 22 подкласса. Коферментами этого класса являются НАД,НАДФ, ФАД, ФМН, убихинон, глутатион, липоевая кислота. Примером подклассов могут служить ферменты, действующие на СН-ОН-группу доноров, на СH-СН-группу доноров, на СН-NН2-группу доноров, на гемсодержащие доноры. Наиболее распространены следующие рабочие названияоксидоредуктаз: 1. Дегидрогеназы – оксидоредуктазы, катализирующие дегидрирование субстрата с использованием в качестве акцептора водорода любых молекул, кроме кислорода. 2. Если перенос водорода от молекулы донора трудно доказуем, то такие оксидоредуктазы называют редуктазами. 3. Оксидазы – оксидоредуктазы, катализирующие окисление субстратов с молекулярным кислородом в качестве акцептора электронов без включения кислорода в молекулу субстрата. 4. Монооксигеназы – оксидоредуктазы, катализирующие внедрение одного атома кислорода в молекулу субстрата с молекулярным кислородом в качестве донора кислорода. 5. Диоксигеназы – оксидоредуктазы, катализирующие внедрение 2 атомов кислорода в молекулу субстрата с молекулярным кислородом в качестве донора кислорода. 6. Пероксидазы – оксидоредуктазы, катализирующие реакции с пероксидом водорода в качестве акцептора     9 ВЛИЯНИЕ рН СРЕДЫ НА АКТИВНОСТЬ ФЕРМЕНТОВ .Большинство ферментов проявляет максимальную активность при значениях рН, близких к нейтральным. Лишь отдельные ферменты "работают" в сильно кислой или сильно щелочной среде. Например, активность пепсина - фермента, гидролизующего белки в желудке, - максимальна при рН 1,5 - 2,5. В щелочной среде "работают" ферменты, локализованные в кишечнике. Изменение оптимального для данного фермента значения рН-среды может привести к изменению третичной стурктуры фермента, что скажется на его активности. С другой стороны, при изменении рН может измениться ионизация субстрата, что повлияет на образование фермент-субстратного комплекса. рН среды влияет на заряд молекулы фермента, а значит на работу АЦ. Оптимальная рН для каждого фермента своя, но для большинства ферментов от 4 до 7. Например, для альфа-амилазы слюны опт.рН равна 6,8.   Зависимостьактивности ферментовот рН среды.Ферменты обычно наиболее активны в пределах узкой зоны концентрации водородных ионов, соответствующей для животных тканей в основном выработанным в процессе эволюции физиологическим значениям рН среды 6,0–8,0.. При определении зависимостиактивности фермента от концентрации водородных ионов реакцию проводят при разных значениях рН среды, обычно при оптимальной температуре и наличии достаточно высоких (насыщающих) концентраций субстрата. рН-оптимум действия ферментов лежит в пределах физиологических значений. Исключение составляют пепсин, рН-оптимум которого 2,0 (при рН 6,0 он не активен и не стабилен). Объясняется это, во-первых, структурной организацией молекулы фермента и, во-вторых, тем, что пепсин является компонентом желудочного сока, содержащего свободную соляную кислоту, которая создает оптимальную кислую среду для действия этого фермента. С другой стороны, рН-оптимум аргиназы лежит в сильнощелочной зоне (около 10,0); такой среды нет в клетках печени, следовательно, in vivo аргиназа функционирует, по-видимому, не в своей оптимальной зоне рН среды. Согласно современным представлениям, влияние изменений рН среды на молекулу фермента заключается в воздействии на состояние и степень ионизации кислотных и основных групп (в частности, СООН-группы дикар-боновых аминокислот, SH-группы цистеина, имидазольного азота гисти-дина, NH2-группы лизина и др.). При резких сдвигах от оптимума рН среды ферменты могут подвергаться конформационным изменениям, приводящим к потереактивности вследствие денатурации или изменения заряда молекулы фермента. При разных значениях рН средыактивный центр может находиться в частично ионизированной или неионизированной форме, что сказывается натретичной структуре белка и соответственно на формировании активного фермент-субстратного комплекса. Имеет значение, кроме того, состояние ионизации субстратов и кофакторов     ферментов различной степени очистки. На первом этапе выделения отходом процесса является нерастворимая часть культуры – биошрот, содержащий нерастворимые включения среды и биомассу продуцента. Далее в зависимости от свойств выделяемого фермента и сопутствующих ему балластных веществ при получении очищенных ферментных препаратов комбинируют различные приемы и методы, такие, как термическое фракционирование,осаждение органическими растворителями и солями, очистка на молекулярных ситах, ионообменная хроматография, электрофорез и др. Еще одна технологическая схема получения препаратов из поверхностной и глубинной культур в виде жидких концентратов, сухих технических препаратов, получаемых сушкой распылением, и препаратов, осажденных органическими растворителями. Фильтрат охлажденной культуральной жидкости собирается в основном сборнике и по мере надобности передается в сборник небольшой вместимости перед поступлением в подогреватель вакуум-выпарной установки пленочного типа. Концентрат культуральной жидкости с содержанием сухого вещества 6 – 10 % поступает в сборник концентрата. Для получения сухого технического препарата концентрат направляют в башню распылительной сушилки 8. Сухой препарат через циклон 10, бункер 11 и шнек 12 попадает на стадию стандартизации, фасования и упаковывания. Для получения более очищенного препарата концентрат из сборника подается на осаждение органическим растворителем. Предварительно концентрат охлаждают в теплообменнике до температуры 2 – 3 °С и подают через дозатор в осадитель. Одновременно в осадитель дозируется охлажденный растворитель. Образовавшийся осадок отделяют на сепараторе 16. Надосадочную жидкость направляют на регенерацию, а осадок – на промывку спиртом и повторное сепарирование. Промытый осадок высушивают в вакууме, измельчают, взвешивают, смешивают с наполнителем и направляют на фасование и упаковывание. При получении ферментных препаратов из культур микроорганизмов, выращенных поверхностным способом, процесс очистки начинается с экстракции ферментов водой. Нерастворимый осадок высушивают и в виде сухого биошрота утилизируют на корм скоту. Экстракт с содержанием сухого вещества 7 – 14 % при получении из него сухих препаратов не нуждается в дополнительном концентрировании и поэтому может быть сразу направлен на распылительную сушку с целью получения технического препарата, или же экстракт направляется в охладитель, а затем на осаждение органическими растворителями или солевыми растворами. Из экстракта можно получать стабильный жидкий концентрат с содержанием сухого вещества 50%, для чего экстракт направляют в сборник, затем в подогреватель и на вакуум-выпарную установку. Готовый жидкий концентрат фасуют в специальные емкости и направляют на склад готовой продукции. Из глубинной культуры можно также получать жидкие концентраты, например, методом ультрафильтрации.     Есть два способа включения фермента в гель. Чтобы получить гель, нужно сначала соединить отдельные молекулы в полимерные цепочки, а затем сплести из этих цепочек трехмерную структуру. Таким образом, процесс имеет две стадии, и на каждой из них может быть добавлен фермент. Можно ввести его в водный раствор будущего носителя, а затем провести их совместную полимеризацию. При этом молекулы белка сами собой окажутся в толще геля. Другой подход – введение фермента в уже готовый полимер. Затем из него получают гель, несущий в себе фермент. Преимущество иммобилизации в геле – равномерное распределение фермента во всем объеме носителя. Кроме того, большинство гелей устойчиво к механическому, химическому, тепловому воздействию. Включенный в толщу геля фермент можно использовать многократно. Естественное ограничение метода – он пригоден только для растворимых в воде субстратов. Носители: совместная полимеризация с носителем - полиакриламид, поливиниловый спирт, поливинил-пирролидон, силикагель; введение в готовый гель - крахмал, агар-агар, каррагинан, агароза, фос­фат кальция. Мембраны.Фермент можно отделить от субстрата полупроницаемой перегородкой – мембраной. Мелкие молекулы субстрата будут свободно проходить через нее, а крупные молекулы фермента останутся внутри. Мембрана, в зависимости от состава, может называться микрокапсулой или липосомой. Чем отличаются липосомы от микрокапсул? Липосома – это круглая или удлиненная оболочка, образованная двойным слоем липидных молекул (обычно лецитина). Раствор лецитина в органическом растворителе упаривают. Получается тонкая пленка лецитина, которую рассеивают в виде мелких частиц в водном растворе фермента. Эти частицы сами собираются в двуслойные оболочки вокруг молекул фермента.   17. Химические способы иммобилизаци Химическая иммобилизация – это создание ковалентных связей между ферментом и носителем. В чем преимущества полученных этого способа? Первое из них – прочность. Ковалентная связь надежно и необратимо прикрепляет фермент к носителю. Какими бы ни были условия реакции – кислотность среды и температура, фермент не отрывается от подложки и не загрязняет целевые продукты. Такое загрязнение недопустимо в производстве лекарств, переработке пищевого сырья, а также при проведении исследований. Второе преимущество – образуя химические связи, можно направленно менять свойства белка. Например, повысить каталитическую активность фермента, стабильность или субстратную специфичность. Белок взаимодействует с носителем своими аминными, гидроксильными и карбоксильными группами. Носитель для химической иммобилизации необходимо предварительно активировать – бромцианом, азотистой кислотой или цианурхлоридом. После такой обработки на нем появляются функциональные группы, способные захватывать белок.Существуют разные способы химическом иммобилизации, в зависимости от того, за какие группы на поверхности носителя цепляется белок. При всех достоинствах химической иммобилизации, в промышленности она малоприменима из-за сложности и дороговизны. Этот способ больше подходит для научных исследований. Аминогруппы. В данном случае используются первичные аминогруппы носителя, связанные с ароматическим кольцом. Превращенные в соли диазония, они взаимодействуют с множеством радикалов. Это могут бытьфенольные, имидазольные, аминные, гуанидиновые, тиольные группы. Например, фенольные радикалы тирозина в щелочной среде образуют азо-соединения. Этот метод привлекателен тем, что аминогруппы могут быть введены в самые разные носители. Производные карбоксильной группы. Если на поверхности носителя много ацильных групп, к ним можно прикрепить аминогруппы белка. В этом могут помочь ангидриды, галогенангидриды, активированные эфиры и другие производные карбоновых кислот. Лучше всего соединяются с белком галогенангидриды, хуже – эфиры. Белки в качестве носителей обладают рядом достоинств: вместительны, способны к биодеградации, могут применяться в качестве тонкой (толщиной 80 мкм) мембраны. Иммобилизацию ферментов на белковых носителях можно проводить как в отсутствие, так и в присутствии сшивающих агентов. Белки используются и в фундаментальных биологических исследованиях, и в медицине. К недостаткам белков в качестве носителей относят их высокую иммуногенность (за исключением коллагена и фибрина). Наиболее для иммобилизации используются структурные (кератин, фибрин, коллаген), двигательные (миозин) и транспортные (альбумин) белки. Синтетические полимерные носители применяются для ковалентной и сорбционной иммобилизации ферментов, для получения гелей, микрокапсул. Полимеры на основе стирола применяются сорбционной иммобилизации. Они могут иметь макропористую, изопористую структуру, а также гетеропористую структуру. Для получения полимерных гидрофильных носителей широко используется акриламид - производное акриловой кислоты. Широкое распространение получил метод включения ферментов и клеток в полиакриламидный гель, имеющий жесткую пространственную сетчатую структуру. Полиакриламидный гель устойчив к химическим воздействиям. Очень интересную группу представляют полиамидные носители. Это группы различных гетероцепных полимеров с повторяющейся амидной группой -С(О)-NH-. Например, полимеры на основе N-винилпирролидона используются для получения иммобилизованных ферментов, способных медленно распадаться в организме. Кроме того, они биологически инертны, что особенно важно при использовании в медицинских целях. Существенным недостатком большинства полимерных носителей является их способность накапливаться в организме. В этом отношении предпочтение отдается природным полимерам, которые гидролизуются ферментами. Поэтому в состав лекарственных препаратов часто входит декстран, а из синтетических носителей - полимеры на основе N-винилпирролидона. В настоящее время ведутся эксперименты по созданию синтетических полимеров, расщепляющихся с образованием нетоксичных продуктов обмена. электронов. ДЕГИДРОГЕНАЗЫ. Это ферменты, которые катализируют отщепление или присоединение водорода. Дегидрогеназы бывают разные, различают несколько подклассов ДГ. Например,алькогольДГ является анаэробной, т. к. эта реакция протекает без участия О2   ОКСИДАЗЫ. Они удаляют водород из субстрата. Они также используют кислород, но в отличие от аэробных дегидрогеназ, их продуктом явля­ется молекула воды. Эти ферменты обязательно содержат медь или же­лезо, т.е. металлы с переменными валентностями. Эти ферменты используют в качестве субстрата перекись водорода или органические перекиси, например перекиси липидов. Т.е. это как раз те ферментные системы, которые обезвреживают Н2О2 и другие перекиси.   5 МЕХАНИЗМ ФЕРМЕНТАТИВНОГО КАТАЛИЗА Ферментативный катализ (биокатализ), ускорение биохимических реакций при участии белковых макромолекул. называемых ферментами (энзимами). Ферментативный катализ - разновидность катализа, хотя термин "ферментация" (брожение)известен с давних времен, когда еще не было понятия химического катализа. Важнейшие особенности ферментативного катализа - эффективность, специфичность и чувствительность к регуляторным воздействиям. Ферменты увеличивают скорость химического превращения субстрата по сравнению с неферментативной реакцией в 109-1012 раз. Столь высокая эффективность обусловлена особенностями строения активного центра. Принято считать, что активный центр комплементарен переходному состоянию субстрата при превращении его в продукт. Благодаря этому стабилизируется переходное состояние и понижается активационный барьер реакции. Большинство ферментов обладает высокой субстратной специфичностью, то есть способностью катализировать превращение только одного или нескольких близких по структуре веществ. Специфичность определяется топографией связывающего субстрат участка активного центра. Активность ферментов регулируется в процессе их биосинтеза (в том числе благодаря образованию изоферментов, которые катализируют идентичные реакции, но отличаются строе


<== предыдущая лекция | следующая лекция ==>
АКТИВНОСТЬ ФЕРМЕНТОВ | Специфичность

Дата добавления: 2015-12-04; просмотров: 165. Нарушение авторских прав; Мы поможем в написании вашей работы!



Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Что происходит при встрече с близнецовым пламенем   Если встреча с родственной душой может произойти достаточно спокойно – то встреча с близнецовым пламенем всегда подобна вспышке...

Реостаты и резисторы силовой цепи. Реостаты и резисторы силовой цепи. Резисторы и реостаты предназначены для ограничения тока в электрических цепях. В зависимости от назначения различают пусковые...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

Studopedia.info - Студопедия - 2014-2024 год . (0.014 сек.) русская версия | украинская версия